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More than 200 Madelung constants (MCs), site potentials, and electric field gradient
components for ionic crystals of different nature calculated by means of the modified
Madelung—Born method are presented. The same technique has helped in finding super-
position rules interconnecting different classic crystals, which are useful for checking the
accuracy of calculated MCs, the local site potentials, and electric field gradient tensors.
The definition of Madelung interaction potentials (MIPs) is introduced, and these purely
geometric quantities, independent of particular charge distribution, are found the most
suitable for tabulation of crystal electric field parameters. MIPs are calculated between a
number of characteristic points of fcc, bce, hep, and some other cells. MIPs depend
strongly on the choice of cell geometric parameters but allow easy calculation of the local
potentials for arbitrary point charge distribution, which are independent of this choice.
The site potentials determined for yttrium ceramics, fullerides, and superfullerides make
it possible to examine some regularities useful for interpretation of the observed phenom-
ena already at the electrostatic level. The comparison of the most recent results with the
calculations of MC of known crystals by means of the Evald and other techniques reveals
complete agreement. The advantages of the present approach are manifested in calcula-
tions of the surface electrostatic parameters, which are found for a number of crystal
planes, surfaces, and sets of layers including those composed of different crystals and
those containing charged crystal planes. This technique can be applied for computation of
MCs, site potentials, and electric field gradients for a crystal body restricted by two
parallel planes, oriented arbitrarily to the crystal axes, in a layer situated at any depth
from the surface. © 2001 American Institute of Physics. [S0047-2689(00)00304-4]

Key words: electric field gradient; fullerides; ionic crystal local potentials; ionic crystal surface energy;
Madelung constants; Madelung interaction potentials; surface electric parameters; yttrium ceramics; zero order
McDonald function.

Contents 6. Electric field parameters of some tetragonal and
1. IOOAUCHON. .« .o e et 572 other erystals. ... 583
2. Method. . . . oo o 573 7. Electric field parameters of fcc superfullerides.... 584
3. Cubic Lattices. .. ...oouenerineeaeanaannnn. 575 8. Electric field parameters of bee superfullerides... 585
4. Madelung Interaction Potentials. .............. - 577 9. Madelung interaction potentials of hcp lattice.... 586
5. Some Tetragonal and Other Lattices............ 578  10. Electric field parameters of hcp superfullerides... 587
6. PFullerides. .. ......oooueueeienaaaannnn... 581  11. Electric field parameters of hexagonal symmetry
7. Hexagonal Lattices. ......................... 583 crystals in real geometry. .................... 588
8. Surface Field Parameters of Ionic Crystals....... 588 12. The surface electric field parameters of different
9. ConcluSions. .. ..ovvove e 594 crystals. ... 590
10. Acknowledgment. .......................... 594 13. Geometric potential factors for L-system layers
11. References. ... ..o i eeeenaeeaanan.. 594 containing charged planes. ................... 592
. 14. Potentials of charged planes in layers of some
. List of Tablgg . ionicerystals. . ... i 593
1. Electric field parameters of traditional cubic
Jattices. . .. oo e 577
2. Madelung interaction potentials of bec lattice.... 579
3. Madelung interaction potentials of fcc lattice..... 580 . .
4. Electric field parameters of yttrium ceramics. .. .. 581 . ,Lls,t of Figures
5 Madelune interaction potentials of YBa,Cu.O 1. The charge distribution Ls.................... 574
. g p ALy . .
CETAIMIC. « o vttt ettt et e ie e eeanns 582 2. Characteristic points of L; system............. 575
3. “‘Shifting’’ of Cs atom to the origin............ 576
4. The smooth branch of MIP in fcc elementary
cell .o 580
“Electronic mail: mmm3ls@ixpres.com 5. The local potential at Cuy in yttrium ceramics as
© 2001 American Institute of Physics. a function of its formal charge................ 581

0047-2689/2000/29(4)/571/25/$35.00 571 J. Phys. Chem. Ref. Data, Vol. 29, No. 4, 2000



572 M. M. MESTECHKIN

6. The voltage between plane and apical oxygens
in yttrium ceramics as a function of Cu; formal

charge.... .. ... 582
7. Positions of trigonal vacancies (I) in the fcc
crystallographic cell. .. ...................... 584

1. Introduction

The discovery of new high temperature superconductors,
such as copper oxide ceramics and doped fullerides, as well
as new magnetic organometallic compounds (all ionic crys-
tals), has enlivened interest in the relatively old branch of the
classic theory of solids: the electrostatics of ionic crystals.!™®
In fact, each modern quantum consideration of these solids
includes a preliminary calculation of the electrostatic field.
The direct use of electrostatic field parameters [the best
known of which is the Madelung Constant (MC)] in experi-
mental investigations of ionic crystals includes the determi-
nation of the cohesive energy, the estimation of the shifts of
ions’ electronic levels in x-ray and optical spectra, the pre-
diction of NQR frequencies, the relative stability of doped
crystal modifications, and the description of the band struc-
ture and surface electronic levels, etc.

Often it seems that all problems with the classical theory
of ionic crystals had been solved at the beginning of the last
century in the known works of Madelung,9 Born, %11
Evald,'? Evjen,'* and others. The most convenient param-
eters of electric potential in a crystal are such absolute con-
stants as Madelung’s or geometric factors of potential. How-
ever, even the most commonly used textbooks, including
exhaustive editions such as Landolt—Bornstein,'* and the lat-
est edition of the Handbook of Chemistry and Physics," as
well as others, contain no more than 15 MCs for the simplest
crystals, calculated with varying accuracy at different times.

Computer programsl‘4 for quantum mechanical calcula-
tion of ionic crystal properties are often based on the Evald
method for finding MC, potentials at atomic location points,
electric field gradients (EFGs), etc. The review of Tosi'® is
usually quoted in connection to this. The prevalence of the
Evald method is possibly due to its thorough description in
the more commonly used textbooks on the solid state theory
[e.g., Kittel,"” Huag (Appendix B),'® and Pavinskiy']. Nev-
ertheless, other approaches are used in modern investiga-
tions. For instance, Evjen’s method is often applied in calcu-
lations of EFG,> although it requires an additional
evaluation of a special correcting (not small) constant®! for
many lattices. The Evjen method has been formulated as a
universal way to accelerate the covergence of the Leibniz
type series by Hajj,>> who determined a very accurate value
of MC for NaCl. We shall not elaborate on the history of MC
calculation (a complete list of references concerned with six
traditional cubic lattices can be found in Tosi’s reviele), but
the competition between the Madelung-Born and Evald
methods is not devoid of interest. The Madelung—Born
method is based on the explicit expression for the potential
of infinite periodic linear distribution of point charges in
terms of the infinite sum of modified Bessel (McDonald)
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functions. The Evald method, containing the Fourier trans-
formation of crystal charge distribution, is oriented on nu-
mierical calculations. Its success depends on the proper selec-
tion of an optimization constant inherent in it. In fact, the
Madelung—Born expression has been deduced anew!®?32*
while it was criticized by Hartman® and substituted for the
modified Evald equation (in calculation of MC for Cdl,).
Nevertheless, the most accurate values of MC with 15 fig-
ures have been obtained in the framework of Born’s
approach®® or by direct summation of the numerical
series.**?’ It appeared that the final point was presented by
Metzger,”®? who created convenient FORTRAN programs
which apply the Evald scheme for a crystal using the results
of its structure measurement directly. Yet, new efforts have
been based on the framework of the Evald method.’**! In
summary, the attempts to improve methods of the electro-
static constants calculations continue from their introduction
up to recent years.*20-3

This article contains MC and other electrostatic lattice pa-
rameters for a number of ionic crystals. All of these are
obtained in the framework of the Madelung—Bom method
combined with the Evjen idea by the author.**735 In this
scheme the neutral domain of the Evjen approach is infinite:
it is a set of unrestricted parallel lines of alternating point
charges. Although such a system itself is not a lattice of
some real crystal, an arbitrary ionic crystal can be built from
a definite small number of this type of domain by a simple
procedure. As a result, the electrostatic potential at any point
of the crystal (including, naturally, atomic positions and thus
MC) can be expressed in terms of the McDonald function.
The accuracy of this scheme is restricted only by the accu-
racy of existing interpolation expressions for the McDonald
function,®® which guarantee 5—6 accurate decimal places for
MC. This accuracy is satisfactory for standard purposes. All
values of MCs, vacancy potentials, and EFG tensor (obtained
by differentiation of the potential formulas) mentioned in
this article are calculated using this method.

On the other hand, this decomposition of any ionic lattice
allows one to easily find connections between different stan-
dard lattices (such as NaCl, CsI, ZnS, Cu,O and perovskite)
in the spirit of Hund’s lattice superposition rule,?” and to
express all potentials of atomic and symmetric vacant posi-
tions in terms of only three constants. A search for these
types of connections has been performed earlier,’®*® and is
described in full detail in the paper of Tosi.'® For instance, a
relation between perovskite, cuprite, and CsCl lattices has
been inferred,*® but, seemingly, never proven. The proof fol-
lows automatically from the above technique. Such connec-
tions are very useful for checking the accuracy of calculated
MCs. The three previously mentioned parameters can be
found from the very precise calculations of MC by
Sakamoto®® for three lattices: NaCl, Cs, and Cu,0, opening
the possibility of presenting MC and atomic potential factors
for all standard cubic lattices with the high accuracy of
10-15 decimals.

1t is worthwhile to note that it becomes unclear whether
any publication of MCs is needed at all, especially in the
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light of papers such as Metzger’s.?*? Indeed, these quanti-
ties can be immediately extracted from computer calcula-
tions for each and every new ionic crystal. Here, the situation
is very similar to that with standard mathematical functions,
which was reviewed by the Ad Hoc Advisory Committee
(whose decisions are mentioned in the Preface to the Hand-
book of Mathematical Functions>®). Most of these functions
are packed in, e.g., the FORTRAN Library, and some simply in
calculators. And yet, following the argument of the Commit-
tee and the practices of the authors of a handbook,'> we may
consider some tables of the electrostatic parameters of ionic
crystals to be useful. We can approach the situation in pure
mathematics even more closely by considering Madelung in-
teraction potentials® (MIP). These quantities are indepen-
dent either of the scaling or of the values of the point
charges, and for ideal lattices, of the results of any measure-
ments, but make it possible to easily find MC for many crys-
tals.

More specifically, an almost incalculable number of ionic
crystals makes it irrational to concentrate MCs for all of
them in one place beforehand. However, if some of them are
needed for consideration of a specific physical or chemical
problem of one time, such as the nature of conductivity of
oxides,? all of the necessary parameters can be calculated by
means of a program. Almost 200 site potentials were pre-
sented in the aforementioned paper; 93 key quantities, the
voltages (V) between metal and oxygen, have been extracted
from these potentials.® MIP gives a much simpler possibility.
For example, a single MIP 3.49513 between atomic and oc-
tagonal positions of fcc lattice (refer to Table 3) makes it
possible to find the mentioned voltage for all 17 considered
crystals of Fm3n group. For this, it should only be expressed
in Volts by transition from the cell vector length 1/y2 to the
distance metal-metal R (in A) and from the unit (e/A) to
Volts by means of the numerical coefficient 14.4. Then V
=2%3.495%14.4%y2/R=142.3508/R, (2 is the electronic
charge of oxygen). Similarly, MIP 18.8334 between perov-
skite Bi and O makes it possible to calculate the voltage for
14 oxides of perovskite type.8 Thus, instead of the tabulation
of 62 site potentials, it is enough to have only two MIPs
produced by computer; the rest can be done by “‘the pencil
and envelope.”” An arbitrary charge transfer in yttrium
ceramics® can also be treated by means of a small number of
MIPs (refer to Sec. 6). Therefore, it seems that these quanti-
ties are the most suitable for tabulation.

The presented numerical data consist of a table of MCs
and vacancy potentials for the ten standard lattices given
with 13 decimals. All idealized lattices are assumed to have
an integer ratio of lengths of cell vectors, except for the ideal
hexagonal closed packing (hcp) lattice where c/a=y(8/3).
For that reason, for a number of atomic positions in cubic
crystals, EFG is proved to be zero. For the rest of them, all
components of EFG tensor are expressed through only two
constants. The first table is the starting point for MIP calcu-
lation. The rest of the data (including EFG components) are
given with 5-6 decimals, which is sufficient for all standard
purposes. The MCs’ tables for doped fullerides collect re-

sults for approximately 75 idealized lattices, containing al-
kali, alkali earth cations, and a mixture of the two in different
positions. This extended number of idealized lattices is the
result of a great electron affinity of fullerene, the large size of
the fullerene ‘‘ball,”” and the resulting ability of cations to
fill the “‘small’” trigonal vacancies. All of these data can be
reproduced from a much smaller number of MIPs. Similar
tables are prepared for ceramics YBa,Cuj,Og 4, with real
and idealized lattices. Other tables present 20 idealized and
several real hexagonal and tetragonal lattices, the Ilatter
mainly for the sake of comparison.

A separate consideration is given for surface MC constants
because the described method is highly appropriate for this
particular purpose. The corresponding table illustrates results
for more than 20 crystal surfaces in NaCl, CsCl, and ZnS
(both sphalerite and wurtzite), BaBiO;, CqKj3, TiO,, etc.
Several tables contain the most convenient quantities of elec-
trostatics of crystals, MIPs. Some of the aforementioned re-
sults have been previously used for description of stability,
electronic nature, and superconductivity of fullerides and
superfullerides.5"3%40

2. Method

Consider an arbitrary lattice, which is characterized by cell
vectors a;, a,, and a3 with angles 6),,6;1,6,3 between
them. There are n point charges Q; in each cell. The skew
angle coordinate system defined by the lattice vectors is
used. The coordinates of charges are (x,, y,, z,) in the zero
cell. The net sum of all charges is zero.

The initial point is the expression for the potential created
by two straight lines of equidistant opposite point charges
*1 at a vacant point of the negative charge.*' The potential
of a straight line of alternating point charges *1 at an arbi-
trary point immediately follows from this.>* This line is di-
rected along vector a3, and the charge distribution has period
as. The positive charge is at point (a, b) where the afore-
mentioned line meets plane (a;, a,), and the negative charge
has distance d from it (d is measured in units of a5, while a
and b are in units of a; and a,, respectively). Thus, there are
two charges in each cell ‘‘above’ and ‘‘below’’ the zero
cell. The potential S(p,q,d)/a; at an arbitrary point (p, q) is
arapidly convergent series S(p,q,d) of McDonald functions
Ko. This potential decreases exponentially with the increase
of distance p from a given line, and ¢ is the displacement of
the observation point along this line from the positive
charge, and both p, ¢ are measured in units of a,:

S(p.q.d) as=(F(p,q)—F(p,q—d))las,
F(p.q) =4k§_:1 Ko(2mkp)cos(2mkq),p#0,
F(o,q>=|q|"1+2q2k§1[k(k2—q2>]", (1)

F(0,0)=0, F(0,1/2)=41n2.
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FiG. 1. The charge distribution Lj.

[See Gradstein and Ryzhik,*' Eqs. (8.526.1), (8.361), and
(0.238.1)]. In fact, F(p,q) contains an additional term—
2(C+1In(p/2)), which is unessential until the difference
S(p,q,d) is used (C is the Euler constant).

Simple geometric considerations, especially clear in Fig.
1, allow the expression of distances p, g through coordinates
(x, y, z) of the observation point and the lattice parameters:

2_.2 2
Pr=Xou11 T yolar—2x0Yol 12,
qn=XouU1tYyoUstz,x0=x—a,yo=y—b,

u1=(a1 Ccos 013)/613,”2:((12 (0] 023)/(13, (2)
u12=a1a2(cos 013 Ccos 923—COS 012)/(1%,

uy=((ay sin 0;3)/as)?,usp=_(a, sin 6y)/as)*.

Here coordinates are measured in lattice vectors units, while
the final unit is a;. Sometimes we use the Cartesian coordi-
nate system, too. Its position, relative to the screw-angle sys-
tem, is clear from Fig. 1: vectors a; and a; lie in the (x,z)
plane with a, along z axes. The latter system is connected to
the crystallographic cell, while the former one is confined to
the elementary cell.

We also introduce a set of similar parallel lines of charges.
Each line is identified by two integers (I, m) and intersects
(a,, a,) plane at point (a+I,b+m). Thus, there are two
charges (= 1) in the same relative positions in each cell as
those in the zero cell. We use the notation L;(a,b,d) for the
whole set of these charges. The set of = charges situated
in the same points will be denoted by QL;(a,b,d). In fact a,
b, d are coordinates of charge — Q in each cell while those
of Q are a, b, 0. Here subscript 3 refers to the direction of
lines. The potential of any line (I, m) from system
Ls(a,b,d) is given by the same Egs. (1) and (2) in which
only a and b are replaced by a+1 and b+m, respectively.
The potential of the whole set L;(a,b,d) is

«©

1
o(r)=— 2

(13 I m=—c0

SPum-Gim-d)- 3)
If we add Q,Ls(x,,y,,z,) to the initial lattice, we obtain
the lattice in which charge Q, is removed from its place and

moved to the ‘‘bottom’” of the corresponding cell. Similarly
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adding Q,L,(0, x;,y,) and QL (0,0, x,) to this altered lat-
tice places charge Q; in the origin of each cell. After appli-
cation of this procedure to each charge, all of them are con-
centrated in the origins of cells, where they completely
destroy each other, and the lattice will disappear. Thus, we
would have obtained the decomposition

L==2 QuLs(x,,y5.26) +Lo(0, %,,y,) +L1(00,x,)).
@

Summation in Eq. (4) has taken over all charges of the zero
cell of lattice L except for that of the origin of the coordinate
system (if it exists). Equation (4) means that any properties
of lattice L are a superposition of the corresponding proper-
ties of the set of charge distributions in the right hand part of
Eq. {4). The net distribution is the set of finite dipoles, n (or
n-1, if a charge is present at the origins of cells in lattice L)
per each cell. The end Q; of the dipole has coordinates rg;
the opposite charge is at the origin. In particular, the crystal
potential is

o]

2 w (S(plm s Im 725)/613

M=

V<r)=—§ o,

+SPim 2 im Y5V @2+ S (Pl Qi X5)a1). (5)

According to Eq. (4), it is necessary to substitute y for z, z
for x, x for y, 0 for a, and x; for b and simuitaneously 1 for
2, 2 for 3, and 3 for 1 in the subscripts in Eq. (2) in order to
calculate primed quantities. Similarly, the substitution x for
z, y forx, z for y, 0 for a, O for b, and 1 for 3, 2 for 1, and
3 for 2 is needed for the calculation of biprimed quantities.
In reality, only 15—20 terms are present in the right hand side
of Eq. (5) as a result of the fast convergence. Therefore, the
time for the calculation of potential is of the same order as
the time for the calculation of a single McDonald function. It
is clear that described procedures can be easily programmed.
The potential can be conveniently presented in a form

V<r>=~<e/R>§l Q,0(r,r)=(e/R)g(r),

g<r>=—g1 Q,0(r,ry), (6)

where g is natural to mention as the geometric potential fac-
tor (GPF), and e is the absolute value of the elementary
charge. R is a lattice geometrical parameter, most commonly
az. Function ¢(r,r,) is the internal sum in Eq. (5), with a,,
a,, a; measured in units of R. In fact, —¢(r,r;) is the
potential at r created by 1 charges with r relative coordi-
nates to the corresponding cell origins where — 1 charges are
situated. It is a nonsymmetrical function @(r;,r)# @(r,r,).
It describes ‘‘self-interaction’” ¢(r,r)#0 too. The latter is
the potential at r in the zero cell created by unit charges with
r coordinates in all of the rest of cells and by —1 charges at
the origins. [The true self-interaction has been already re-
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moved in Eq. (1)]. The difference g(r,ry)=o(r,r)
—@(r,ry) can be used in Eq. (6) instead of ¢(r,r,) due to
the zero net cell charge. The value of g(r,r,) describes the
potential at point r when charges — 1 are placed in all cells
at the equivalent r positions, whereas charges +1 are situ-
ated at ;. The ‘“‘self-interaction’’ is excluded from g(r,ry)
because g(r,r)=0. This function is a symmetrical at both
points: g(r,r,)=g(r,,r). The latter equality follows from
the invariance to the inversion of the Bravias lattice.

We use two manners of presentation of numerical data for
GPF. In ideal lattices, g(#) does not depend on the results of
measurements of lattice parameters. It is a dimensionless
quantity, and it will be given instead of the potential value.
In this case, R will be chosen as the dimension of the crys-
tallographic cell rather than that of the elementary one. For
instance, R=a; in CsCl, while R=a;y2 in NaCl. In real
crystals, g(r) contains data of measurements (as well as R
itself), and the lattice points’ potentials are given in Volts.
The same manner of representation is used for EFG: in ideal

lattices it is shown as dimensionless factor & at e/R3. The

details of differentiation and proper definition of EFG tensor
components in the skew angle coordinate system used were
described earlier.>* However, it should be mentioned that
EFG could also be found by direct summation® of the cor-
responding series, which converge as reciprocal cubes in
contrast to potentials and MCs, where convergence is the
" main problem.

Symmetric quantity g(r,r;) allows casting the electro-
static energy in the form:

n

E=(e*2R) 2, Q:g(r)=(e*R) 2 0.08(rc.r)

=s5<t

=—¢e?al/R. (7N

The first expression emphasizes the additivity of the bonding
energies of different cells, while the second gives for MC a
natural generalization of the known formula onto the lattice
with n point charges in one cell. It resembles expression for
interacting charges in which the Coulomb potential is re-
placed by g(r,r,)

a= ~.§1 Q,8(ry)2= _1§<t 0,0,8(rs.1,),

g(n)=§1 0.8(r,.r). (8)

Therefore, it is natural to mention g(r,r,) as the MIP. In
contrast to the Coulomb potential, it depends not only on the
distance between two points, but on their positions within the
cell, and also on the lattice cell choice. It should be empha-
sized that MIP is a purely geometrical parameter indepen-
dent of the values of lattice point charges. Therefore, the
second expression allows describing charge transfer inside
the crystal cell.

FiG. 2. Characteristic points of L system.

The sign used in Eq. (8) stresses the fact that the contri-
bution to MC from the opposite charges is positive when
g(r,ry) is positive. Defining MC we must bear in mind two
points: it is important not to deviate significantly from the
definitions most commonly used and the fact that the real
physical meaning has only the electrostatic bonding energy
per cell. Elaborating the first point, we usually choose the
elementary (but not crystallographic) cell as a unit. Then we
obtain MC per unit chemical formula in most cases. How-
ever, to deal with the usual values for standard lattices, we
use some parameter R of the crystallographic cell as the unit
of length, rather than a;. Nevertheless, to apply the same
definition for two-atomic and polyatomic cells we were ob-
ligated to include charges Q into definition (8). Therefore,
in such cases as ZnS, the usual MC is four times less than
our MC.

3. Cubic Lattices

Before discussing numerical data, we will demonstrate
how the above technique works. System L3(0,0,0.5) for cu-
bic lattices is shown in Fig. 2, where certain key points are
mentioned. In notation used, the unit positive charge is at A,
and the negative charge is at M. According to Egs. (1)—(3),
the GPFs at A, F and E are

ga=a=—41In2+ 16“;:'0 Ko(2(2k+ 1) 72+ m?)
=—41n2+32K(27) +Ky(2v27)
+Ko(4m)+2K(2+/5m))

=—2741366=—g,,,

gr=b=82, >  Ko(2(2k+1)mJ(I—1/2)2+m?)

k=0 Ilim=—o
=32(Ko(2V2Z7) + Ko(2VZ7) + Ko(2V2 7))

=0.219414=—gy, 9)
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z

F1G. 3. “‘Shifting”’ of Cs atom to the origin.

co oo

gr=c=82, > Ko2Q2k+1)w
k=01

m=—0

X (1= 1/2)%+ (m—1/2)?)
=16(Ko(m) +2(Ko(V57)+Ko(3)

+Ko(V13m) +Ko(V177))
=0.486590=—g; .

Here, the prime at the sum symbol indicates that all indi-
ces simultaneously cannot be zero. The inclusion of the rest
of the terms of sums is senseless until interpolation formulas
from the Handbook*® are used for the McDonald function (or
the corresponding program from the FORTRAN library).

Now, let us consider CsCl crystal (Fig. 3) as an example.
Applying the above procedure, we begin by placing the ori-
gin of the L system at point F, with the direction to the Cs
atom. This contributes — g,,=a to the GPF of Cs according
to Eq. (4). The next position of the origin is at E, and the
direction is to F. In this case Cs occupies a position similar
to that of point L in Fig. 2, and obtains the g; =c addition to
the GPF. Finally, the origin coincides with the Cl atom, and
the direction is from Cl to E. Now the relative position of Cs
is the same as that of N relative to the origin in Fig. 2. Thus,
the total GPF of Cs is a+b+c=-—2.03535. It is evident
that GPF of Cl is negative of the GPF of Cs, and the MC has
the same absolute value. In a similar manner we obtain the
whole fourth column of Table 1.

The numerical values of MCs placed in the first, fifth, and
seventh rows of Table 1 are taken from Sakamoto’s palper‘26
Solving equations for a, b, and ¢, we obtain a= (a(CsCl)
— a(Cuy0))/3=—2.741 365 174 540 80, b=(a(Cu,0)
—a(NaCl))/3— a(CsC1)=0.21941443848361, and ¢
= (a(NaCl) — a(CsC1)/3=0.486 589226 6046. After that,
we can construct the entire table. The first six decimals co-
incide with those in Eq. (9).

It is worthwhile to mention that the 24th and 28th rows of
the table demonstrate a special property of these two lattices:
the zero equipotential surfaces are planes parallel to cell
faces and passing through the tetragonal vacancies.” These
form a set of small cubes surrounding each atom. The poten-
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tial is negative in small cubes containing O and positive in
cubes containing Bi and Ba. It is also clear from the fourth
column of Table 1 that:

a(ZnS) =2 a(NaCl) + 4 a(CsCl), a(CaF,) =4 a(CsCl)
+ a(NaCl),
a(CgpAs,fec) = a(NaCl) +4 a(CsCl),

a(CgoAs,bee) =2 a(CuyO) — a(NaCl) —4 a(CsCl),
(10)

a(BaBiO;) = 4 a(Cu,0) — 8 a(CsCl).
a(K,PtCly) = 8 &:(Cu,0) + 4 a(NaCl) — 16a(CsCl).

The first two equalities are discussed in Ref. 16, the fifth one
was mentioned in Sec. 1; the rest are discussed in this article
for the first time. The numerical value for K,PtCly is in com-
plete agreement with the earliest calculation of Lennard-
Jones and Dent.** Unfortunately, the second interrelation Eq.
(10) reveals incorrectness (1 in the tenth figure) in the nu-
merical value?®® for «a(CaF,). Nevertheless, we believe that
the ghantities used for determining of a, b, ¢ are correct
(they do not include the value for CaF,). A model system,
which may be defined as cubic Al,O5, is also placed in the
table. It consists of four +3 charges in tetragonal positions
and six —2 charges in the middle of all edges and faces, and
may be decomposed as

This leads to rows 33—36 in Table 1.

This table guarantees much higher accuracy than really
needed for chemical use. However, from the very beginning
of the investigations on the electrostatics of ionic crystals
there. existed a deep interest in the exact relationships be-
tween the calculated quantities'¢?>?%38 that could separate
the purely mathematical problems from the problems of
physical measurements. As Johnson and Templeton, who
made the first systematic computer calculation of MCs,
wrote:*® ““In many cases more digits are listed than have
chemical significance in order to ensure that the mathematics
is not the determining factor in the accuracy with which MC
is known.”’ The high accuracy became even more important
after application of the electrostatic data as a starting point in
quantum calculations.

The final comment on this table is that the vertices of the
mentioned small cubes in BaBiO; are the rare points from
the whole table with nonzero EFG. The corresponding coef-
ficient at e/R® for its component along the main cube diag-
onal is £=284.9638 (the asymmetry coefficient 7=0) in the
both cases (24th and 28th), the same value this coefficient
holds for the Cu atom in Cu,O. This is clear from the super-
position rules Eq. (10). Using the same line of reasoning, it
follows that EFG is identical for atom O in perovskite and
for cation in bec CgpAz(£=85.6573, n=0). It has half of
that value (£=42.8287) for octagonal vacancies in Cu,0, as
well as for O atoms in model Al,Os;, and it is four times
greater for Cl in K,PtClg.
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Crystal Nr MC and GPF Formula Value
CsCl 1 @ —(a+b+c) 2.035 361 094 5260
2 g(Ch=—g(Cs) —(a+b+c) 2.035 361 094 5260
3 g(E)=—g(F)" ¢ 0.486 589 226 6046
4 G(H)* 2.000 000 600 0000
NaCl 5 a —a—b+2c 3.495 129 189 2664
6 g(Cly=—g(Na) —a—b+2¢ 3.495 129 189 2664
Cu,0 7 o —4a—b—c 10.259 457 033 0750
8 G(0) (=5a+b—c)/2 6.476 530 928 9892
9 G(Cu) 3{a+b)2 —3.782 926 1040 858
10 g(B)y=—g(F)! ~(a+3b)2—c 0.554 9717 029 404
ZnS i1 a —6(atb) 15.131 704 416 3431
12 2(8)=—g(Zn) —3(a+b) 7.565 852208 1716
13 g()=—g(N)=—g(E)? —a—b—4c 0.575 593 829 6388
14 G(o)* 2¢ 0.973 178 453 2092
CaF, 15 o —5(a+b)-2c 11.636 575 227 0768
16 G(Ca) 3(a+b) —7.565 852208 1716
17 g(F) —2(atb+c) 4.070 723 018 9052
18 G(E)! a+b+dc —0.575 593 829 6388
BaBiO, 19 a ~8(2a—b~-¢) 49.509 872 1133 584
20 G(Ba) 2(a—2b+c) —5.387 209 649 8069
21 G(Bi) 2(2a—b-c) —12.377 468 028 3396
22 G(0) —2a+2¢ 6.455 9088 022 908
23 G(F)! 2b—2c ~0.534 349 576 2420
24 G(T)? 0 0.0
CepAs 25 « —6a+6b 17.764 677 678 1465
(BCC) 26 G(Cgo) ~3g+3b 8.882 338 839 0732
27 g(Ar)=g(Ap) a—b —2.960 779 613 0244
28 G(I)? 0 0.0
Ceos 29 a —4(2a+2b-c) 22.121 962 794 8759
(FCC) 30 G(Cqp) —2(2a+2b-c) 11.060 981 397 4379
31 g(Ap)=g(Ap° —6¢ —2.919 535 359 6275
32 g(Ap)? 2(a+b+c) —4.070 723 018 9052
Model 33 a —24a~21b—9¢ 56.805 757 941 3821
ALO; 34 G(Al) 9a+b)2 —11.348 778 312 2574
35 2(0z)=2(0p) —(Ta+5b+6c)/2 7.586 474 334 8700
36 g(A)=g(N)! ~3(a+3b+2c)/3 1.664 915 108 8212
K,PtClg 37 a 4(-5a+b+4c) 63.490 388 870 4239
38 G(K) 2(a—2b+c) —5.387 209 649 8069
39 G(PY) 6(a—c) —19.367 726 406 8723
40 G(Ch —2(a—c) 6.455 908 802 2908

!Octagonal vacancy. Letters cotrespond to Fig. 2.
2Vacancy. Letters correspond to Fig. 2. This is a rare point with the integer value of GPF. The first six zeros are
calculated, the remaining zeros are a still unproved hypothesis {See Ref. 24).

3Tetragonal vacancy. Letters correspond to Fig. 2.
*Vacancy. Letters correspond to Fig. 2.
SSubscripts correspond to Fig. 2.

4. Madelung Interaction Potentials

It is also beneficial to observe the way MIPs work in ideal
cubic lattices. The fcc lattice cell contains four ‘‘atomic’

positions A with equal distances between them, four mutu-

ally equidistant octagonal O positions (at the center of the

cell and at the middle of the edges), and eight tetragonal T
positions (points 7, S, etc. in Fig. 2) with three possible
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mutual distances. Accordingly, there exist three MIPs
84a=8o0=8rr=—"a-c=2254T16,  grp=guo=—a
=2.741365, grrm=gso=—a—b—c=2.035362. The last
MIP between the tetragonal positions and other positions is
independent of their mutual distances and can be expressed
through the former three: gar=gor=3(grr+ &7
+ g 7pm)/8=2.636 813. Generally, the MIP is reduced with
the distance between the corresponding points until the dis-
tance is smaller than half the main cube diagonal. Then the
MIPs begin to repeat due to the symmetry requirements. The
MIP is the same for different types of points if the distances
between them are equal and small enough.

Now we can calculate the GPF and MC for an ideal cubic
crystal composed of arbitrary point charges with a net sum
of zero situated in the aforementioned positions. For
example, in a perovskite crystal gpi=38,000" 84005
=300(840~840) ~ Oi8a0=2.1180(—2.0350p;, and go

=2844Q01840908it 844082 ~ 844001 Ori(840—844)
=—2.25500+0.4870Qp;. These relations proved to be use-

ful for describing formation of hole on the oxygen lone pair
band in BaBiOs.* Naturally, for Qo=—2, Opi=4, we
obtain the above result from Table 1. Similarly for CaF,
we have:  £ca=30c.84at80r8aT= CQca(3844—4847)
=30c(a+b)/2=—3.782930¢,. In this manner, we can
reproduce the entire Table 1.

We must bear in mind that MIPs depend largely on the
choice of the crystal cell. For instance, let us consider the fcc
elementary cell. Here, cell vectors are directed to the face
centers. It contains only one point A (the origin), one point O
(1/2,1/2,1/2), and two points T' (1/4,1/4,1/4), (3/4,3/4,3/4),
where the values in brackets are screw-angled coordinates.
Therefore, the number of interactions is considerably less:
VA0= VTT: 3.495 13, VAT= VATI = VOT: V0T= 3.78293.
(The connection with previous quantities is self-evident; the
letter V is used instead of g to avoid confusion with the
aforementioned interactions between similar points in the
crystallographic cell). Although the values of MIPs have
been changed, the peculiarities, mentioned above remain the
same, and these new values naturally lead to the same results
for MC, GPF, and EFG. In particular, the value of the GPF
in CaF, is not changed: gc,=2Q0rVur=—"0cVar
=—3.782930c,.

In the bce elementary cell, the basis vectors connect the
origin with the centers of three adjacent cubes. The angles
formed between them are 109.°4712. The cell contains one
point A (origin), three points O (cube edge centers), six
points P (see Fig. 2), which are the tetragonal vacancies in
the bec lattice, six points I, and six I’ etc. The last two types
are trigonal vacancies of the bcc lattice; their coordinates are
given in Table 2.

As a reminder, the origin of these terms is connected with
the picture of the lattice that is built of spheres centered at
points A. Each term reflects the number of adjacent spheres
which can be touched simultaneously by a smaller sphere
centered at the corresponding point. Therefore, each vacancy
is characterized by its radius, e.g., for T vacancy it is
(y15)/3—1 in units of the main sphere radius, etc. Table 2
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contains all MIPs for the bee lattice. Similar data for the fcc
lattice are located in Table 3.

We see that the MIP depends not only on the distance
between corresponding points but also on their positions
relative to the lattice framework, and the mentioned pecu-
liarities of the MIP generally remain true. A smooth branch
of MIP dependence on the distance can be extracted at small
distances within the cell. The MIP decreases steadily until
the distance slightly exceeds half of the cube edge length.
When the point approaches to charges in adjacent cells, MIP
begins to repeat due to symmetry requirements and loses the
visible regular behavior as a function of the distance only.
Therefore the same value appears for different distances and
for different point types, and on the other hand, different
MIP begin to correspond to the same distance depending on
the point position in the cell, as in the case of g;,; and g 4.
The difference between MIP and the Coulomb potential ap-
proaches zero for the smallest distances. The smooth behav-
ior of MIP in the fcc elementary cell is demonstrated in
Fig. 4.

In total, there are only nine interaction constants in the bec
cell, which make it possible to obtain MC for arbitrary point

- charge distribution among 44 mentioned symmetry points in

the crystallographic cell of this type of ideal crystal. This
ratio, 48:9, is even larger in the fcc lattice. In fact, Tables 2
and 3, contain the whole electrostatics of a crystal. The dis-
cussed tables are built by means of a modified computer
program® (it takes a few seconds on the PC for several doz-
ens of points). Further discussion of Tables 2 and 3 will be
given below in connection with MCs of fullerides.

A similar additive approach is also possible for EFG, but
here the superposition of different pair interactions requires
the rather cumbersome addition of tensor quantities, which
must be brought to a common coordinate system for all
points’ pairs beforehand, and suitable tables are not given
here. Instead, we prefer to use the above-mentioned
program®* directly to the whole crystal. However, for most
of the other lattices, the result depends on the measured lat-
tice parameters, and below we give some examples to show
how to apply these procedures®* to arbitrary ionic crystals.

5. Some Tetragonal and Other Lattices

The interesting examples of tetragonal symmetry crystals
are yttrium superconducting ceramics shown in Table 4.
Most of them are envisioned as being constructed of cubes of
identical dimensions for the sake of mutual comparison. It
means that we assume a=b=c/3 for YBa,Cu;0s,
YBa,Cu,,0,, YBa,Cu,Oq, with the common a =3.8422 A for
all three crystals. The same value is used for YBa,Cu;Oq s,
which means that for the latter two lattices elementary cell
parameters are a;=a,=a, daz=5aly2, 6;,=6;3=90°,
tan 6)3=7 and a;=2a, a,=ay2, ay=3a, 6,,=45°, 6
= @,3=90°, respectively. The description of the structure of
these crystals and notation of atomic positions are taken from
Blaha,* where EFG for these crystals has been calculated for
continuous distribution of electron density directly from the
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TABLE 2. Madelung interaction potentials of bec lattice!

Points A (0] P I
A §12=2.96078 €15=293143 g111=8121=2.959 82
£23=2.96078 826=820=42511,  g11=854=5.78825
o R;p=1/2 ro3=(v2)12 0, 821282157
g25=2.93143 gao=3.143 84
P ris rog= 14,19 856 &5.11=85.20=3.080 26
=(/5)/4 =3/4; g52=3.34797
ras=(J5)/4. rsa=rsgi3
=(y6)/4
r2,ll:(\/2)/8’ 818,19~ 2.959 82,
ryn=3(2)/8. ra14=(y34)/8; rs11=(414)/8, 8115~ 811,18~ 81820~
! ra,=(426)/8, rs0=(430)/8 3.667 53
ria= (3478 ra15= (V10)/8, rig,10= 5(v2)/8,
ryo = (v42)/8. rias=(6)18,
riis=(v22)/8,

Vac. 1.0000 2(y3)3—1
Radii =0.15470
Points’ 2. % %, 0
numbers
and 1.0,0,0 3.401
coordinates

40,31

r1820= (v38)/8

(J15)3—1 (J6)12—1=0.22474
=0.29099
5.3, % : 11. 5/8,5/8,1/4
3 1
6. %'? ? 12. 5/8,1/4,5/8
7. % §’? 13. 1/4,5/8,5/8
g. 131 14. 3/8,3/8,3/4
9. 113 15. 3/8,3/4,3/8
1 1°3
10413 16. 3/4,3/8,3/8
17. 5/8,3/8,0
18. 5/8,0,3/8
19. 0,5/8,3/8
20. 3/8,5/8,0
21. 3/8,0,5/8
22. 0,3/8,5/8

"The upper right part of the table contains all possible MIPs between characteristic points of the bcc elementary
cell (Fig. 2). The numbers of some typical points are also shown. The lower left portion gives all possible
corresponding distances. The diagonal of the table include both types of parameters (if the suitable set of points
consists of more than one point.) Points’ coordinates are given in the elementary cell skew angled coordinate

system.

Poisson equation corresponding to that density. In general,
the correspondence between EFG of continuous and point
charge distribution is rather poor.

Several linear dependencies are noticeable in Table 4. The
first one is, in fact, a direct consequence of the charge con-
servation. It connects the valence of the Cu; atom to the
oxygen contents in the crystal. The almost exact proportion-
ality (with coefficient =~ — 10) between this valence and the
crystal potential at Cu; is much more interesting (see Fig. 5).
At the same time, potentials at ions, keeping their charges,
almost never vary. O’Keeffe,”> who postulated the consis-
tency between the local crystal potential and the charge of
copper ion in ceramic YBa,Cu;0;, has performed a search
of these types of dependencies. MIPs are very useful for such
purposes because the set of MIPs allows finding the electric
field for arbitrary point charge distribution. All necessary
MIPs for YBa,Cu;0; are presented in Table 5. As an ex-
ample, we extract from Table 5 expressions for potentials of
all ions as a function of charges on copper ions. If O is the
value of the charge transfer from Cu; to Cu,, we must add

—16.5212Q, 6.1050Q, 3.4225Q, —3.44870Q, 23.88630,
—15.1621Q, —15.0658Q, and 11.4868Q, respectively, to
the suitable potentials of Y, Ba, Cu,, Cu,, Oy, O,, O3, O4 in
Table 4. The entire table of potentials from O’Keeffe* can be
reproduced in this manner.

The most important regularity, which is clear from Table
4, is the linear dependence of the voltage between O, (O3)
and O4 on the oxygen content in the crystal. The voltage
passes, in fact, through zero just at a point (6.5) correspond-
ing to the disappearance of superconductivity (see Fig. 6).
This is naturally to connect to the appearance of holes in O
atoms on the CuO plane. All mentioned trends are expressed
even more distinctly for the real geometry of these crystals.
(Suitable data are also presented in Table 4.) In real crystals,
an additional feature appears, which supports the given in-
terpretation: in the last two ceramics, the potential at the Cu;
ion is lower than the linear dependence requires. Most likely,
this potential is insufficient to hold the holes at copper.
Therefore they flow to oxygen ions. The positive voltage
between O, and O,, which appears simultaneously with
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TABLE 3. Madelung interaction potentials of fcc lattice'

Points A (0] T I
A 812 813=3.78293 8157381184=¢,6=2197 8110
=3.49513
o rn=(3)/2 8237 824=3.7829 825=826=82.9=82.10=4.17092
3

T ra=3(3)/4 ras=(y3)/4 g34=3.49513 835=836=8&4,10=1.104 49
ri3=(3)/4 r34=(3)/2 839= 83,10= 84,6 3.640 39

1 r19=2(y3)3=2rs, ras=(I3)6, rys=(y3)/12, 8s6=4.721 7T4=gq 10

r110=2(y6)/6=2r ¢ rys=1/2

re0=(51)/12;

8s50=3.81184=¢g4

r30=3r3s, 8510=3.81353=¢g¢9=g¢ 11
r39=5r35 rag=(J123)/12 rg19=2r56=(J2)/6; rso=r;5s,
r610= 716
9= (\/22)/6, Y11= (\/10)/6,
rsy0=1/3
Vac. 1.0000 2= 0.224 74 0.15470
rad 1=0.4142
Points’ 1. 0,0,0 2.5 51 314,14, % 5.13,1/3.1/3 9.2/32/3.23
numbers 4.3/4, 3/4, 3 6. 0,1/3,1/3 10. 0,2/3,2/3
and 7.1/3,0,1/3  11. 2/3,0,2/3
coordin. 8. 1/3,1/3,0 12.12. 2/3,2/3,0

"The upper right portion of the table contains all possible MIPs between characteristic points of the fcc
elementary cell (Fig. 2). The numbers of some typical points are also shown. The lower left part gives all
possible corresponding distances. The diagonal of the table include both types of parameters (if the suitable set
of points consists of more than one point.) Points’ coordinates are given in elementary cell skew angled

coordinate system.

these holes, means that holes are directed only to oxygen
ions in the CuO plane. In other words, the narrow bands of
oxygen lone pairs are not completely filled, which is a nec-
essary requirement for the existence of large electron pair
states occupation numbers, i.e., pair condensation and, thus,
superconductivity.**

The values from Table 6 for the crystals that were consid-
ered by Templeton* completely confirm the results of this
first application of electronic computers to calculation of
MCs. The data for hexagonal type crystals, discussed below,
lead to the same conclusion. At the same time, comparison
with tables from the textbooks!*!> reveals some deviations
from the table of Templeton,” as well as from the present
calculations. The table from the Handbook," even in the

0 02 0.4 06 0.8 1

FiG. 4. The smooth branch of MIP in fcc elementary cell.
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latest edition (1999), in fact, reproduces on p. 12-36 (in dif-
ferent scale) the collection of the oldest results.'* It is also
necessary to mention that presentation of data for nonideal
crystals is justified only if the values of geometric lattice
parameters used are given simultaneously. Therefore, we re-
strict ourselves by checking some of the known results.®*
These MCs, together with some new data for tetragonal and
other crystals, are reproduced in Table 6.

The discussion after Table 4 has shown the usefulness of
idealization of crystal geometry: simplifications rarely influ-
ence conclusions, which follow from the electrostatic consid-
eration. The situation remains the same for TiO, type crys-
tals, too. Here we can assume that all distances metal—
oxygen are equal. This assumption permits one to express
the additional structure parameter x (which sometimes is un-
known) through the ratio u=as/a, of the lattice constants:
x=(I+u*2)4.

The values of MCs for TiO, and MgF, after transition to
the shortest anion—cation distance scale are equal to 19.0802
and 4.7621, respectively, and coincide exactly with results of
Templeton.*’ The second entries for TiO, and MgF, in Table
6 demonstrate that the change in calculated parameters
caused by this simplification are unlikely to alter the conclu-
sions, which are meaningful at the electrostatic level. The
third entry for TiO, permits one to compare the changes
caused by idealization with those resulting from the further
refinement of lattice parameter measurement.

The rest of this type of oxide, included in Table 6, confirm
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TaBLE 4. Electric field parameters of yttrium ceramics
YBa,Cu;04 YBa,Cu;055 Yba,Cu;0, YBa,Cu,Oy
V! 2 V! 2 7 vl 2 7 V! 2 ”
y? ~23.242 —6.421 —23.245 —6.427 0.0010 —23.247 —6.433 0.0020 —24.648 —6.430 0.0019
—30.704 —1.634 —30.837 —1.811 0.0027 —33.337 —1.112 0.6510 —34.036 —-1211 0.0139
Ba —20.011 3.210 —20421 2.663 0.619 —20.831 —2.705 0.565 ~22.033 —2.793 0.766
—17.617 1.967 —17.967 2.069 0.679 —17.253 —1.658 0.526 —18.245 —1.564 0.848
Cu, —9.965 —17.166 —20.301 —3.530 0.836 -30.637 16.252 0.217 —24.027 13.441 0.205
-12.736 —19.041 —23.000 —15.367 0.737 —29.666 16.380 0.342 —24.980 14.063 0.380
Cu, —29.963 8.583 —29932 8.739 0.016 —29.901 8.865 0.017 —31.315 8.729 0.016
—26.918 10.499 —27.097 10.888 0.005 —28.926 9.558 0.135 —29.899 9.520 0.051
(oN - - 21.903 —10.334 0.940 26.184 17.159 0.550 29.044 10.598 0.495
- - 19.601 9.878 0.757 26.885 16.312 0.416 28.585 9.008 0.954
0, 18.703 5.881* 18.729 5.889 0.857 18.754 5.896 0.877 17.350 5.882 0.876
20.799 6.080° 20915 6.254 0.000 18.914 6.285 0.018 18.059 5.964 0.043
(o} 18.703 5.8814 18.926° 5792 0.921 18.641 6.047 0.781 17.243 6.025 0.784
20.799 6.080° 21.003’ 6.198 0.026 18.821 5.104 0.065 17.997 5.495 0.036
Oy 17.818 6.021 18.729 12.387 0.383 19.639 12.550 0.263 17.884 11.283 0.277
19.737 2425 20.985 11.076 0.587 23.329 10.049 0.330 21.801 8.613 0.303
MC 66.772 74.467 86.063 97.866
70.932 78.594 89.174 102.630
E8 250.242 279.083 322.541 366.776
264.164 294.718 335.874 382.673

IThe potential (in V).

2The main component of EFG (in 10% V/m?). The absence of the corresponding column means that asymmetry coefficient = 0.

3The first row for each entry corresponds to the idealized lattices (R=3.8422 A). The second row for each entry corresponds to the lattices with real geometry
taken from the same sources that have been used in Ambrosh—Droxl et al.(Ref. 45) That means: a,=a,=3.8665, a3=3.073 12a; for YBa,Cu;0¢; a;
=a,=3.8665/2, a3=3.09432a; for YBa,Cu3O4s; a;=3.8231, a,=1.01656a,, a;=3.05530a,; for YBa,Cu;0;; a,=3.8393, a,=1.00833a;, a,

=3.542 77a, for YBa,Cu;0;.
“For these ions 7=0.836.
SFor the second O} ion V=18.419, {=6.136, »=0.701.
SFor these ions 7=0.049.
"For the second O ion V=21.003, {=6.360, 7=0.063.
8The total cell electrostatic energy in eV.

the assertion: the difference in calculated potentials with the
data from Torrance® does not exceed 0.1%, where a some-
what ambiguous procedure has been used for determination
of x. It is worth noting that for cassiterite (Sn0O,), for which
the most accurate experimental data are available, the ideal-
ized value for u differs from the measured one by less than
half of the last experimental figure. The results for La,CuOy,
and for LaSrCuOQ, (if we put x=0, and x= 1, respectively, in

FiG. 5. The local potential at Cu, in yttrium ceramics as a function of its
formal charge.

the last entries of Table 6) are also in reasonable agreement
with published calculations.™®

6. Fullerides

Fullrides and superfullerides are considered to be ideal
ionic crystals. Two examples have already been included in
Table 1, and two others of the tetragonal type are shown in
Table 6. Both types of these ionic crystals are obtained from
fullerite crystals by means of doping by alkali or alkali—earth
ions>*6-5! The difference between these two types of crys-
tals is in the ionic charge of the fullerene anion, which does
not exceed 6 in the first case, while in the second it varies
from 7 to 12. In the other words, the ¢, band of fullerene is
being filled in fullerides, and the occupation of the next 7,,
band begins in superfullerides. From the viewpoint of the
crystal structure, their difference lies in the filling of trigonal
vacancies ([).

The general definition of these vacancies follows from the
same condition already mentioned in Sec. 3 for the bce lat-
tice: a small sphere with the center at I touches three adja-
cent fullerene spheres simultaneously. Trigonal vacancies
(D)* for fcc crystals are points that lic on the segments,
connecting tetragonal T and octagonal O vacancies, and di-

J. Phys. Chem. Ref. Data, Vol. 29, No. 4, 2000



o862 M. M. MESTECHKIN

TABLE 5. Madelung interaction potentials of YBa,Cu;0; ceramic'

Y Ba Cu, Cu, O, 0O, 03 (ON
Y - —1.5149 —3.2145 10.0922 —-3.2122 13.1175 13.4167 —2.8982
Ba —07575 —1.9702 3.5049 0.9048 3.8260 0.4806 0.4563 6.9191
Cu; —3.2145 7.0098 - —3.4226 10.2121 —4.2822 —4.3408 12.0094
Cu, 5.0461 0.9048 —1.7113 0.0262 -1.7311 10.8798 10.7249 0.5227
0, —-3.2122 7.6520 102121 —3.4622 - —4.3052 —4.3154 9.8678
0, 6.5588 04736 —2.1411 10.8798 —2.1526 1.5534 9.8604  —0.7311
O; 6.7083 04563 —2.1704 10.7249 —2.1577 9.8604 1.6802  —0.8052
O, —1.4491 6.9191 6.0047 0.5227 4.9339 —0.7311 —0.8052 —0.7870

!The table is not completely symmetric since the interaction potentials presented account for interaction of the
given ion with both symmetrical ions of identical charges (for convenience). The diagonal elements describe
mutual interaction of ions of the symmetric pair. Calculated MIPs (in V) correspond to the same real geometry

of YBa,Cu;0, that has been used in Table 4.

vide the distance TO as 1:2 (Fig. 7). Then the two points /
lie on a straight line connecting the face center (F) with the
cube vertex that does not belong to the mentioned face and
divide this segment into three equal parts. Simultaneously, /
points are centers of equilateral triangles with one vertex
coinciding with that of the cube vertex and two others with
two adjacent face centers. Points / touch three fullerene
spheres, being at the smallest distance, 1/y6 from all of them.
The ratio of the radius of this cavity to that of fullerene
sphere is 2/y3-1, while the similar ratios for O and T vacan-
cies are y2-1 and (y6)/2-1, respectively. Thus, each T va-
cancy is surrounded by four I points. There are eight I va-
cancies in each fcc elementary cell. Their coordinates are
given in Table 3. We also mention some properties of char-
acteristic points of the bee crystal. In this lattice O vacancies
lie on the middles of the edges and faces. T vacancies (P on
Fig. 2) are on the middles of the segments connecting two
adjacent O vacancies. Positions of trigonal vacancies are on
the face diagonals 1/8 of its length from O points, and on the
same distances from the latter inside the cube body on the
intersection of the equatorial plane of the cube with its diag-
onal plane (Fig. 2). There are three O, six 7, and twelve I
vacancies in a bce elementary cell. Trigonal vacancies I lie
in planes passing through centers of three adjacent fullerene
spheres on equal distances 3(y2)/8 from them. Hence, the
radii of these cavities are {y6)/2-1, while those of T and O

FIG. 6. The voltage between plane and apical oxygens in yttrium ceramics as
a function of Cu; formal charge.
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cavities, in units of the fullerene radius, are (y15)/3-1 and
2/43-1, respectively. It is worth mentioning that radii of
smaller vacancies remain the same, as in the fcc lattice. In
principle, all electrostatic parameters of these species can be
extracted from Tables 2 and 3.

The first publication of MC for some fullerides was
Fleming.> Similar data for superfullerides were presented
later®3%4% and used for interpretation of the stability, super-
conductivity, and kinetics of the doping process of these
compounds.’ These parameters are shown in Table 7 for fcc
and in Table 8 for bce crystals. The EFG data from these
tables are presented for the first time in this article. We can
observe the connection between the values from Tables 7
and 8 and Tables 2 and 3. For instance, the MC of C&)”A,1
(14 line, Table 7) is according, to Eq. (8), —4.721737%12
+3.811 835%(88—4) — 3.813 52712 —7.104 491%12—3.640
389%12 4 3.495 129%(11—1) — 4.170 918+8+3.782 926=(22
—2)=209.054 398, etc. Comparison of rows 4 and 5 (11 and
12, etc.) and also 6 and 7 in Table 7 shows that tetragonal
positions do not feel the occupation of the octagonal posi-
tions, and anions do not ‘‘react’’ to the interchanging of
filled and empty tetragonal positions. The explanation of
these peculiarities is very simple: according to Table 3, MIPs
of T points with A and O are identical. The charges at O
positions completely shield the T points from the effect of
the increase of A—charges as a result of this identity. Be-
cause of MIP g,7>g40 , the shift of the charge from O to T
increases MC and cell electrostatic energy. The tetragonal
vacancies are the closest to trigonal ones according to the
definition of the latter, and this is the reason for the drastic
difference (of order 15) in the GPF of T positions surrounded
by I charges and not surrounded (rows 5 and 8). A similar
reasoning explains the opposite change of MC and EFG for
identical anionic charges (rows 5-7 and 26-28).

The results for bee structure A 15 used for the description’
of CgpA5 are shown in the 4th column of Table 8. The data
for similar structures with I positions filled are collected in
columns 9 and 10. The flaky structure for CgoAy first ap-
peared in Fleming® as well. Its parameters are placed in col-
umn 5. As is clear from comparison of this column with the
next one, the cation transfer from tetragonal to trigonal po-
sitions is energetically unfavorable, although it keeps the
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TABLE 6. Electric field parameters of some tetragonal and other crystals

MC and E!

VZ

§3

4

5

Crystal 7 a, u=asla, x
TiO, @ 4505315  —44.7410 —0.5715  0.8007 45929  0.64428 0.3056
E 282.5011 25.8847 —18.7457 05771
TiO, @ 449729  ~44.6666 —1.5513 02415 45929  0.64428 0.3019
(idealized) E 281.9979 25.8329  —18.8228  0.6840
TiO, a 450541 —44.7325 -0.6412  0.5627 459373 0.64395 0.3053
(accurate) E 282.4560 25.8815 —18.7563  0.5863
MgF, o 11.18855  —22.1115 ~0.6869  0.8344 4.623 0.66018 0.31
E 69.6999 127385  —87917  0.4281
MgF, P 11.16177  —22.0591 0.6573  0.9017 4.623 0.66018 0.3045
(idealized) E 69.5331 127074  —8.8576  0.5957
SnO, o 4437777  —42.8444 1.7130  0.1574 473727  0.67262 0.3066
(idealized) E 269.7860 24.6021 —15.9266  0.5263
RhO, a 4494618  —44.9465 2.6861  0.2998 44862  0.68842 0.3092
(idealized) E 282.5850 256998  —17.9531  0.4367
RuO, a 4394613  —44.8291 2.8010 03720 44919  0.69160 0.3098
(idealized) E 281.7556 25.6098 —17.7228  0.4164
Cr0, @ 446529  —46.2538 1.4995  0.9471 441 0.65986 0.3044
(idealized) E 291.6037 26.6472  —204263  0.5988
NbO, a 454181 — 433426 24173 0.5008 477 0.62055 0.2981
(idealized) E 2744181 252114  —17.8159  0.8130
CeoAd® p 28.9301 15.1320 0.2067  0.0000 11547 092 0.2500
E 72.1543  —2.9066 —0.6214  0.8139
Ceoha’ @ 25.6805 15.4509 0.5523  0.0000 11.547 092 0.1250
E 64.0496  —0.5615 —1.8038  0.0286
CaCl, o 109179  —16.0023 —04456  0.1686 6.24% 0.67308 0.275
E 50.3890 9.1922 33769 07114 47311°  1.03045 0.325
La,_ Sr,Cu0}? La —-27.9468  —1.7641  0.0000 3.784 1.892 0.183'°
+3.8199x —0.0357x @=51.1014 " 0.636
Cu —27.6449 8.4531  0.0000 +1.2915x 0.367'
—6.0018x —1.1265x 0.267
O(apical) 19.2841 17356 0.0000
—1.3522x +2.3381x E=1943073
+4.9109x
O(plane) 22.1269 53429  0.1643+
4.0057x  +9.6860x  0.1376x

The cell energy in eV (per two molecules).

The potential (in V). The first row in each crystal entry refers to cation, the second row to anion.

3The main component of EFG tensor {in 10° V/m?). The first row in each crystal entry refers to cation, the
second one to anion.

“The asymmetry coefficient of EFG tensor. The first row in each crystal entry refers to cation, the second one
to anion.

>Geometric parameters: a, is the lattice constant, u is the contraction coefficient, and x is a coefficient at the
relative distance between cation and anion. In idealized structures of cassiterite type, it is x=(1+x%/2)/4. The
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lattice constants are taken from the same sources as in Refs. 8 and 43.

SThe tetragonal structure with tetragonal (T) positions filled in the bases and equatorial plane.

"The tetragonal structure with trigonal (/) positions filled in the bases and equatorial plane.

5The unit of length; the rest geometric quantities are the relative parameters of the orthorhombic group.

9This MC, relative to the closest anion—cation distance, coincides with one calculated in Jonson and Templeton

(Ref. 43).
10Relative coordinates of the apical oxygen.
YRelative coordinates of the La.

2The occasional distribution of Sr is modeled by charges 3—x/2 on La and 2+x on Cu.

type of the structure. It is evident from columns 5, 9, and 10
that partial occupation of I positions ‘‘induces’’ EFG in Cg
sites. Only the complete filling of the whole I set restores the
zero gradients (column 12). The first bec model for
superfulleride® CgoAq, is presented in column 11. The data
for bee superfullerides39 B1Cgp, B4Csy, and B¢Cgy, doped
by alkali earth cations B also can be extracted from Table 8
if the values from columns 4, 6, 8, and 10 for g, & and MC

are multiplied by 2, 2, and 4, respectively, and 7 remains
unchanged.

7. Hexagonal Lattices
Consideration of hexagonal lattices will follow the same
lines as those of cubic ones. We accept hep of spheres with

radius 1/2 as an ideal structure. That means the following

J. Phys. Chem. Ref. Data, Vol. 29, No. 4, 2000
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FiG. 7. Positions of trigonal vacancies (I) in the fcc crystallographic cell.

values of lattice parameters: a; =1, a,=1, az3=(8/3), 6,
=120°, 6;3=6,3=90°. It is convenient to place the origin
of the coordinate system between the octagonal vacancies.
Then the ‘‘atomic’’ positions have coordinates shown in
Table 9. There are two octagonal, four tetragonal, and 14
trigonal (I) vacancies in each cell. There exists a close cor-

M. M. MESTECHKIN

respondence between these cavities and their analogs in the
case of the fcc lattice. In particular, the radii of similar va-
cancies are the same as is seen from Table 9. The difference
lies only in that the touching fullerene ‘‘balls’> now belong
to the adjacent cells in some cases. As in the fcc lattice, each
tetragonal vacancy is surrounded effectively by four trigonal
ones (possibly, they are sometimes situated in the neighbor-
ing cells as well). However, here there are two special /
points which belong simultaneously to two different T va-
cancies. These specific I points may be filled or unfilled to-
gether, independently of all other trigonal vacancies without
the violation of the equivalence of all other points. Geometri-
cally, I points are intersections of a straight line connecting
adjacent T and O points with the radius of the closest Cg
sphere perpendicular to this line. .
All electrostatics of this lattice are contained in Table 9.
The features of MIPs mentioned earlier are also repeated,
however; the variety of the potential values is greater. In
Table 10, we show the results of calculations for 20 hcp

TaBLE 7. Electric field parameters of fcc superfullerides

o T I
X gcgh N -3 N g N g 7€ MC

1 4 152473 0 0 16 1.0821  181.249  32.6589
2 5 18.7425 4 07920 © 16 07231 236.175  48.6982
3 5 19.0303 0 4 43531 16 12536 188911 522593
4 5 19.0303 0 4 —-95033 16  —22105 529456  38.4029
5 6 228132 0 8 -92155° 16  —20391  537.118  62.0741
6 6 225254 4 05042 4 —-9.5033 16  —25696  584.382  57.9374
7 6 225254 4 05042 4 45331 16 0.8945 243837  71.7938
8 7 263083 4 02164 8 46409 16  —23982  592.044  85.1036
9 8 304947 0 0 32 10771 227233 126.2869
10 9 339898 4 -19112 0 32 07180 282159  154.8704
11 9 342776 0 4 -89332 32 1.2485° 234.895°  147.8484
12 10 377727 4 —2.1990 4 -8.9332 32 0.8894°  289.821°  179.9270
13 10 380605 O 8 —8.6454 32 —2.0442  583.102  173.4806
14 11 . 415557 4 —24868 8 —8.6454 32 —24032  638.028  209.0543
15 2 75659 0 4* 7.5659 0 15.1317
16 2 6.9903 4% 69903 0 0 13.9805
17 3 11.0610 4 29195 4% 7.5659 0 25.6171
18 3 107732 4% 6.7025 4 37829 0 24.7537
19 4 145561 4% 40707 8 0 39.5976
20 4 15.1317 0 8* 8.1414 0 46.5463
21 5 18.6268 4 23439 8% 8.1414 0 64.0219
2 6 221220 4% 5.8391 §* 8.1414 0 88.4878
23 8 304947 0 0 16 2.1643 362498 130.6357
24 9 33.9898 4 -19112 0 16* 1.8052  417.424  159.2192
25 9 342776 0 4 49232 16* 23357 - 370.160  166.0536
26 10 374849 4* 15839 0 16* 14461 472350  194.7930
27 10 377727 4 -2.1990 4 49232 16* 19766  425.086  198.1322
28 10  38.0605 O 4% 8.7062  16% 25072 377.822  209.0374
39 11 415557 4 —24868 4% 8.7062  16% 2.1481 432748 2446111
30 12 45.0508 4% 1.0084 4% 8.7062  16* 1.7890  487.674  287.1751

"The number of filled vacancies of suitable type. The asterisk * means that corresponding vacancies are filled

by cations of doubled charge.

2The dimensionless coefficient at the main component of EFG tensor is £ The absence of a suitable column
means that £=0 for all rows. The asymmetry coefficient =0 for all cases.

3The value for another half of T vacancies is 4.6409.

“The value for another half of T vacancies is —9.2155.
5The values for another half of I vacancies are —2.2156 and 575.540, respectively.
The values for another half of I vacancies are —2.5747 and 630.366, respectively.
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TaBLE 8. Electric field parameters of bce superfullerides
1 2 3 4 5 6 8 9 10 11 12
x 3 3 4 4 6 6 6 6 9 12
Coot g 8.8823 8.7943 11.8393 117257  17.6766  17.5886  17.7589 17.7589 26.4709 35.5178
¢ 0 0 39.824 12.145 0 0 28.586 —14.550 0 0
N! 6 0 0 0 6 0 0 0 6 0
-g 2.9609 0.4095 —2.1418
0 £ —85.657 316.966 —479.09
7 0 0.7817 0
N 0 6 0 8 6 12 0 0 12 0
—-g 29325 2.0690 0.2932 1.2359 —1.4034
T ¢ 33.653 63.041 298.600  92.521 357.468
7 0 0.8250 0 0 0
N! 0 0 8 0 0 0 12 12 0 24
-g -0.0109 1.1562 12118 ~2.8417
I £ —183.56 140.842 145.082 370.337
7 0.0603 0.8446 0.7434? 0.8827
MC 17.4647 175902 23.6567  27.5895  54.0839  56.4735 56.9120 111.696 196.056

56.7455

The number of filled vacancies of a suitable type. The rest of the notation is also the same as in Table 7.
2BFG parameters for the second half of occupied I points (inside the cube body) are é= —158.478 and 7=0.8309.

lattices. In all of them, both atomic positions are filled, and
the occupation of the rest of their symmetric points guaran-
tees the equivalence of both ‘‘atoms.”” Note that in some
cases (such as lines 7, 11, etc.) it is possible to keep this
equivalence when only half of the points from the same class
are occupied. In cases such as 8, 10, and 13 only the equiva-
lence between T points surrounded by filled I points and the
rest of T points is violated; that is quite natural. These types
of data may be useful for the consideration of the doping
process. The occupation of trigonal vacancies is compatible
with the relative radius of these cavities, if only fullerene
spheres fill atomic positions. In the latter case, trigonal cavi-
ties are available for some alkali ions. On the other hand, this
is in accordance with the recent experimental registration of
hexagonal doped fullerite crystals.*®*”

Nevertheless, it is easy to recognize some known crystals
in the first columns of Table 10. The third column contains,
in fact, the MC of the NiAs crystal with O positions occu-
pied. The fourth one gives the MC of the wurtzite (ZnS).
Indeed, transforming a MC to the closest distance between
opposite ions, we obtain 2.680267/y(8/3)=1.641322. The
fifth one is connected to the idealized CdI, crystal (Bozorth)
and repeats the data.”> The sixth column is also of interest. If
we assume that Cdl, is a complete hcp analog of fcc fluorite
with metal ions that occupy all atomic positions and halo-
gens that occupy all tetragonal ones, then from the 6th col-
umn we obtain an MC in the ‘‘chemical’’ scale:
7.770 66/y(8%3)=1.586 18. The latter is much closer to the
value from chemistry textbooks 1.57—1.59'*°2 than the cor-
rect value from the 5th column: 6.173 206/3y2=1.4551. The
reason lies not in the use of the above improperly described
structure of the Cdl, crystal but in the canonization of the
very approximate oldest result of Hund®® quoted in Sher-
man’s review,54 which made its way from there into other
sources.'* Comparing the lower portion of Table 10 and the
suitable parameters of fcc fullerides with the same anion
charges (Table 7), we see that generally hep fullerides have

smaller MCs and are less stable. Therefore, fcc fullerides and
superfullerides are observed more often. However, the lattice
constant is smaller in a hcp as a result of close packing.
Therefore, when the whole “‘I shell”” is occupied, i.e., for
x=6 and x=7, hep fullerides are predicted4° to be more
stable.

As before, all data from Table 10 may be reproduced by
means of the MIPs from Table 9. For example, the GPF at
Cd and I atoms are —2g,,=—3.704396 and 2g,0— g4
=2.468 811, respectively. Similarly, the MCs of C6_06A6 from
the 12th column and CG—O7A7 from the 5th column (the lower
portion of Table 10) are easily obtained. The attraction of
two fullerene anions to the whole family of I charges is
20%6(2.285234+ 1.647245)=47.189 748Q, where integer
factors are numbers of interactions. Their mutual repulsion
and the mutual repulsion of I charges are Q21.235585
and  12(3.322936 + 2.392315 + 1.578 676 + 1.245062)
+6(2.285234 + 1.703 337 + 1.239527) = 133.836 456, re-
spectively. a=(6%47.189748—36%1.235585—133.836
456)/2=52.410486 in the first case. In the second case, we
must add to this attraction the octagonal charges
401.852198, the mutual repulsion of the latter 1.2838, and
their repulsion from [ charges 6(2.828 819+ 1.32395)
=24.916 614, that gives a=(7%47.189 748+ 28+1.852198
—49%1.235585 — 133.836456 — 1.2838—2 % 24.916614)/2
=68.346316. Since specific I* points are situated on the
same ‘‘vertical’’ axis as ‘‘atoms’’ and T points, the asym-
metry of EFG for I* is absent as well as for T points. The
results from the 5th column (lower portion) explicitly dem-
onstrate that I* charges as a result of their position feel
doubled repulsion from 7" charges as compared to the rest of
the I charges. ‘

It is necessary to take into account the fact that real crys-
tals deviate from ideal hcp more often than in the case of the
fec lattice. In particular, real geometry of mentioned Cdl,,
ZnS as well as ZnO, BeO etc. does not exactly satisfy the
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TABLE 9. Madelung interaction potentials of hcp lattice

Points A 0 T 1
A 1.23559 €15=1.85220 g1.6=827=2.403 05, g1.22=2.671 07, g25,=128380;
rip=1 =84 826=817=1.51280 81,17= 81,12= 2.285 23,
819=82,17= 1.64725
o) ris=(2)12, g34=1.283 80 846=2.403 05, €3.10=839=2.828 82,
ra=iN/6 ry=(y6)/3 836=835= 140079 8321=8421=1.852 20,

T r16=(6)/4,
ry7=(38)/4;
ré‘sz 5(y6)/12,
ri7=(y6)/4

1 rom={6)3=r;»J2;
ri=(6)3=ry7y2;
rio=(y3)/3,
ry=1D/3

Vac. rad 1.0000
Points’ 1.2/3,13, %
numbers 2.1/3,2/3,0
and

coordinates

ra6=(J6)/4;
rye=(y22)/4,
ryg=(y102)/12

r310=(16)/6,
r39=(y2)/2
=r32157421
=(y66)/6;
r317= (y22)/6,
ray15=(y34)/6,
r315=(y38)/6,
r314=5(42)/6

J2—1=04142

815=856=2.333 80,
£57=1.852 20,
867=1.23559
ri8=(6)/2=3rsg,
rsa=(J2)2,rg7=1

rs512=(y6)/12;
rs10=(V6)/4,
rso=(y102)/12;
75177 (y38)/12,
1147 (y22)/4,
rs16=(v118)/12,
7514=(J166)/12,
r717=5(6)/12,
r714=(v102)/12,
T622=(J6)/12,
rg 1 =7(y6)/12,
r72=(y102)/12,
rea=(y22)/4

83177 83,18= 83,15= §3,14= 1.323 95

85,12=4.996 04;

85,10= §59= 2.08099;

8517~ 87,14= 1.873 30,

8516 85,14 87,17~ §7,14= 1.258 63
8622=8821=4.858 60,

871:2= 8621~ 140079

89,10=3.322 94,

810,12= 89,12~ 2.392 32,

8913 & 10,0~ 2285 23,

812,17 89,14~ 1.703 34,

812,20 8o,15= 1.578 68,

810,17= 8o,17= 1.245 06,
8921=81421=3.018 01,
81022~ 89,22

=g~ 8un~1.53739,
81020 89,8= 1.239 53,
821,2=1.23559

ro10=1/3,

10,127 (v2)/3,r9 1= (¥5)/3,
79.13= 1,ryp10=(y3)/3,
r12,17=2(y6)/9,r91,=4(J6)/9,
r1220= (33)/9,19,15= (4105)/9,
710,17= (J66)/9,r9 17=(493)/9,
To21=1/3,r 141 =(J17)/3,
T1022= (V513,79 22=2(J2)/3,r 1721
=(J13)/3,r1521=4/3,
T1020=5(y3)/9,r9,15=(y129)/9,
r2=1

0.22474 0.15470

5.1/3,2/3,3/8 9. 719,29, 1/6 15. 4/9, 2/9, 5/6

6. 1/3, 2/3, 5/8 10. 4/9, 2/9, 1/6, 16. 17/9, 5/9, 5/6

7.2/3,1/3, 1/8. 11. 79, 50, 1/6 17. 2/9, 4/9, 2/3

8.2/3,1/3,7/8 12. 2/9, 4/9, 1/3  18. 2/9, 119, 2/3
13. 209, 79, 1/3 19. 5/9, 7/9, 1/3
14. 719, 2/9, 5/6 20. 5/9, 7/9, 2/3
21%2/3, 1/3, 0 22.% 1/3, 2/3, 112

*The upper right part of the table contains all possible MIPs between characteristic points of the hcp elementary cell. The numbers of some typical points are
also shown. The lower left portion gives all possible corresponding distances in the symmetric cell. The diagonal cells of the table include both types of
parameters. Points’ coordinates are given in the elementary cell skew angled coordinate system. The asterisk * denotes two specific trigonal I vacancies.

condition c:a=y(8/3). Calculated electrostatic parameters
for these crystals are shown in Table 11. They correspond to
the real geometry used in Tcmpleton.43 The necessary geo-
metric parameters are also included in Table 11.

The quantities similar to those of Table 10 for some crys-
tals are placed in the 3rd and 4th columns for convenience of
comparison. It is obvious that relatively moderate deviations
from the ideal geometry influence the EFG tensor signifi-
cantly. The MCs found are in complete agreement with those
published by Templeton.* (if we correct the anion—cation
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distances for ZnS and SiO,, which do not correspond to the
values of a and ¢ from that paper43), confirming again the
reliability of this source of MCs.

The results for some oxides of La,0; type included in this
table demonstrate the usefulness of the ‘‘idealization proce-
dure’” for the electrostatic consideration, when the exact ge-
ometry is unknown. If we compare the data for real La,O,
with those for its possible counterpart of pure hep type (with
both atom sites filled by La (z=0.25), two tetragonal (z
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TasLE 10. Electric field parameters of hep superfullerides
1 2 3 4 5 6 7 8 9 10 11 12
X 1 1 I 2 2 3 4 5 5 6
Cyt G 2.4688 2.6803 2.4688 5.3605 5.1491 7.8293 10.5486 13.2398 13.4512 16.1814
¢ —0.1379 0.2811 —0.1379 0.5621 0.1432 04242  —9.1501 11.2216 11.6406 22.157
N 2 0 1 2 2 2 2 0 0
0 -8 2.4206 3.7044 23211 22217 22217 0.97604
£ 2.6867 —10.081 —2.9063 —8.4993 —8.4993 —35.567
N 0 2 0 4 2 4 4 2 42 0
T -z 2.6803 2.4101 2.7923 25221 0.1786 2.6770 2.2948
£ —0.2811 27.4966  —6.2930 21.4847 256.593 20.929 54.719
N! 0 0 0 0 0 0 2 6 6 12
-g —1.6393 1.1798  -0.9221 1.2888
I £ 508.939 142.474 356.450 117.763
7 0 0.2443 0.1175 0.3967
MC 244470 2.68027 6.17321 7.770 66 7.705 79 15.3770 21.5671 36.6956 31.0892 52.4105
X 6 7 7 7 7 8 8 9 9 10
Ceif G 15.9202 18.8616 18.6502 18.6393 18.9006 21.5419 21.3304 24.1070 24.0497 26.7300
I3 11.5027 22.438 22.0190 1.9285 12.582 227186 22.3002 22.5807 12725 13.006
N! 2 0 2 2 0 0 2 2 2 2
0 -g 0.8766 —0.2696 0.8766 —0.3691 -04685  —0.3691 —0.4685
& —41.160 —62.635 —41.160 —68.228 -73.821 —68.228 —73.821
N 43 2 0 4 0 4 2 4 2 4
T -g 2.4068 —4.4515 0.0633 —47216  —4.3395 —4.6096 —6.6830 —6.9531
& 48.707 —209.98 283.816 -18220  —215.99 -188.21 19.119 46.896
N! 6 124 12 8° 147 12 128 12 14° 14
-8 —1.1424 1.2670 1.0685 —1.7653 0.6659 —1.0552 1.0467  —1.2755 04238  —1.8984
I £ 396.342 126.655 157.491 437257 159.792 383.512 166.551 423.351 211.426 467.077
7 0.1111 0.3452 0.3091 0.5255 0.1676 0.1458 0.2753 0.1370 0.1360 0.0851
MC 45.4411 64.1404 68.3463 57.9203 67.7080 78.2804 82.6570 99.3779 101.050 118.146

!The number of filled vacancies of a suitable type. The rest of the notation is also the same as in Table 8. The absencé of an appropriate row means that 7= 0
in all cases.

%For the ‘‘surrounded’’ T positions the corresponding parameters are g =4.6063 and &= —209.423.

3For the “‘surrounded’” T positions the corresponding parameters are g =4.4943 and £=—215.434.

“For I charges which surround occupied- T positions the corresponding parameters are g=1.0394, £=373.341, and 5=0.1544.

SFor the surrounded T positions, the corresponding parameters are g =6.8378 and £=19.674.

®For two specific I positions, the corresponding parameters are g=3.4408, £=—619.879, and 7=0. The occupied I points surround 7', and T3 positions.
For two specific I positions, the corresponding parameters are g =0.8838, £=231.456, and 7=0.

8For I charges which surround occupied T positions the corresponding parameters are g = 1.2537, £=413.232, and 5= 0.1446.

®For I charges which surround occupied T, positions the corresponding parameters are g=1.8766, £=455.469, and 7=0.0879, while for two specific /

positions these are g=2.9379, £=485.856, and n=0.

=(.625) and one octagonal (z=0) positions occupied by O),
we notice that the most essential difference is the increase of
nonequivalence of oxygen ions (g(O,.)=20.15, g(O)
=19.17) in the hep structure. Thus the natural trend in the
real crystal is the approaching electric potentials of non-
equivalent oxygen ions. Therefore, the oxide with identical
potentials of all oxygen ions may be considered *‘idealized.”’
To reach this goal it is enough to alter z(La) within the last
experimental figure: for z(La)=0.24455 the potentials be-
come g(0,)=19.960V, g(0O,)=19.962V, while MC re-
mains almost unchanged, being equal to 40.137. If we pos-
tulate this condition for the other oxides too and use the

interpolation formula z=0.018 3913 ¢/a+0.215917, the re-
sults placed in Table 11 are obtained. The difference with the
data® where z values of La were kept for Ce and Pr oxides, is
very small and does not influence the conclusions of that
paper. This idea may be tested by comparison of potentials in
real Nd,O; from the table (whose geometry is measured ac-
curately and differs most significantly from idealized) with
the ‘“‘ideal”” ones: —29.758 and 20.509. It should be empha-
sized that this procedure does not extend onto EFG, remain-
ing different at both oxygén ion types.

The aforementioned doped crystal Ceo(Py), is an interest-
ing example of not closely packed hexagonal lattice. A small

J. Phys. Chem. Ref. Data, Vol. 29, No. 4, 2000



588 M. M. MESTECHKIN

TaBLE 11. Electric field parameters of hexagonal symmetry crystals in real geometry

Crystal MCs vt 2 E3 a, A cla z
ZnS* @ 10.7153 20.2013 0.1344 40.4025 3.819 1.6355 0375
Waurtzite ag 6.5719 2.6788° 0.2599°
Zn0* @ 10.8428 24.0241 44161 48.0483 3.2495 1.6024 0.345
ag 5.9941 2.7107° 5.2615°
BeO* @ 10.7461 28.6769 2.6762 57.3538 2.698 1.6234 0.365
ag 6.3676 2.6865° 1.8250°
NiAs a 10.0455 —19.6142 —2.4141 80.3178 3.602 1.3906 0.25
ag 6.7701 20.5447 6.2303
Cdr, @ 6.2175 —12.7043 —1.8504 21.1155 424 1.6168 0.25
ag 43819 84112 -0.0708
TiCl, @ 6.1270 —14.8262 —3.8262 24.7757 3.561 1.6498 0.25
ag 43474 9.9495 0.0334
La,0, @ 40.1496 —28.9744 1.1150 146.8369 3.9373 1.5569 0.245
ag 24.1787 19.9203 —2.2473 19.99226 —0.9563° 0.645’
Nd, 04 @ 40.1435 —29.7923 1.3408 151.0380 3.8272 1.5654 0.2463
ag 24.1290 20.2843 —2.2109 20.6884° —1.4351° 0.6469’
Ce, 04 @ 40.1096 —29.3150 1.1661 148.5505 3.888 1.5610 0.24463
(idealized) ag 24.1663 20.2021 —2.3337 “20.2016° —1.03116 0.645"
Pr,0; a 40.1359 —29.6170 1.1946 150.0761 3.851 1.5570 0.24455
(idealized) ag 24.1785 20.4072 —2.4411 20.4089 — 10099 0.6457
Si0, @ 54.5936 —47.9303 —8.1020 470.7359 5.01 1.0918 8
ag 17.6094° 30.5257 40.8143 05723 0.0954!
Cr,04 @ 62.257 —34.9265 0.9158 1085.7712 4954 2.7420 0.3475
ag 24.65213 25.3893 —12.370 0.5111 0.306™

IThe potential in Volts (if different is not stated). The first row in each crystal entry refers to cation; the second one refers to anion.

The main component of EFG in 10%° V/m?. The asymmetry coefficient is zero unless it is not given explicitly. The first row in each crystal entry refers to
cation; the second one refers to anion.

3The cell energy in eV (if different is not stated).

*All data for cation differ only in sign.

The relative values: a= 1,0 =1. Relative values are presented for the sake of comparison with the data from Table 10.

%The values of V and £ for oxygen ion in tetragonal position are given for comparison.

"The value of z coordinate of tetragonal oxygen. The geometrical parameters are the same as in Torrance (Ref. 8), Templeton (Ref. 43) with the exception of
the shortest distances between cation and anion in ZnS and SiO,. The value 2.339 05 has been used in Jonson and Templeton (Ref. 43) for the former, while
2.3423 corresponds to a and ¢ from that paper, etc.

®The rest of the geometric parameters are taken from (Ref. 60) for 8 quartz.

This value coincides completely with that calculated in Jonson and Templeton (Ref. 43) and differs only by 0.8% from the first result (Ref. 14), which
belongs to Hylleraas (Ref. 61).

YEFG asymmetry coefficient for Si position.

'The EFG asymmetry coefficient for O position.

2The hexagonal cell contains six molecules.

BThis case allows estimating the influence of the accuracy of geometric parameters on the electrostatic quantities. Using rhombic cell with geometric

parameters taken from the same source (Ref. 60) gives for azp=24.666. The relative difference of the other quantities is of the same order.

The relative parameters of hexagonal cell for Cr and O, respectively.

charge transfer (—Q) from P, molecules to fullerene is ecules. Therefore, a=(Q/4)(Q/4)2.266717—(20%/16)

noted.*” Phosphorus molecules in this crystal may be de-
scribed as elliptic charge distributions placed into octagonal
vacancies of this lattice.*’ ““Vertical’> coordinates of focuses
are 0.5%0.081 (in units of ¢). We can assume that Q/4
charges occupy these points and calculate the charge transfer
energy. However, we must exclude interactions between fo-
cuses of the same molecule. The most convenient tool to do
this is MIPs. These are 2.266 72 between Cgq and the focuses
and 2.658 47, 2.553 87 between the focuses of different mol-
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X(2.65847+2.55387)=1.61517Q*. This corresponds to
the charge transfer energy of —2.30280Q2 (eV), taking into
account that a=c=10.1 A.

8. Surface Field Parameters
Of lonic Crystals

The method of calculation described in Sec. 2 is especially
suitable for the calculation of surface field parameters. To



ELECTROSTATIC PARAMETERS 589

find a field from a single neutral surface, it is only necessary
to omit one summation in Eq. (3). Adding the results for
several similar surfaces, we obtain the potentials of a layer, a
film, a set of different layers, etc. In the same manner, it is
possible to verify that the exact value of the GPF inside the
crystal body is created by only 3—4 adjacent planes from
each side. For instance, using this method we may calculate
that the GPF in NaCl above the Na ion decreases with the
increase of the distance from (100) plane as 1.2908, 0.1320,
0.0143, 0.0015, 0.000 17, and 0.00002 for each quarter of
the lattice constant. The contributions to the same constant
inside the crystal body are —3.231 08 (from the own plane),
—3.498 22 (after addition of the two adjacent planes), and
—3.49509 (after addition of the two next adjacent planes).
The next two planes lead to the exact value from Table 1:
—3.49512.

If a neutral plane divides the crystal into two identical
halves, it is evident that the surface GPF can be obtained
from the GPF of that plane and the GPF of the whole crystal
by means of

8surf— (gplane+ gbody)/2- (12)

The ratio y= gqu¢/gpuix 1S Decessary for determining the
surface electronic states of ionic crystals.”> The interest in
surface MCs has, in fact, appeared simultaneously with the
introduction of these quantities for the volume materials.>®
However, the number of published results has not increased
significantly from that time and yields the amount of data on
the volume MCs.

The results of surface MC calculations for some crystals
are shown in Table 12. These parameters were obtained di-
rectly by summation of contributions from five to six under-
lying planes and checked by means of Eq. (12). Only in the
case of NaCI’s surface (100) was there complete agreement
with the data.’>® The rest of the data for y*® (which are
more accurate than the data55) differ from the values in Table
12 by 0.02-0.04. The difference reaches 0.1 for the data®
defined as estimated. Perhaps, it is worthwhile to mention
that the latter values have been used in real experimental
investigations®’ of the shift of x-ray electronic levels in ionic
crystals.

The number of neutral surfaces in ionic crystals is even
greater than the number of crystals themselves. Therefore, in
Table 12 we try only to demonstrate different types of pos-
sible situations, which can be met in such calculations, and
to make some comparisons with previous works.

The data for crystal layers are also included in Table 12.
We define a ‘‘monolayer’” as a set of equidistant identical
crystal planes, which are mutually shifted in any direction
and come to take up the same relative positions as in the
crystal. The whole crystal can be built of such layers without
their mutual displacement. For instance, the monolayer con-
sisting of (010) planes in the NaCl crystal contains three
planes, while those corresponding to (210) and (211) planes
contain 11 and 19 planes, respectively. The number of planes
in a monolayer is usually odd. An even number of planes is
an indication of some peculiarities of the given case, such as

in the (010) layer of BaBiOs, or in the (101) layer of wurtz-
ite. In the first case, it is evident that the monolayer consists
of two different planes: BaO and BiO,. In the second case,
the outer planes are identical, but mutually shifted. Besides,
a separate plane divides the crystal into two parts which are
on different distances from that plane. Therefore, Eq. (12)
cannot be applied here.

The explanations of y>1 easily follow from the consid-
eration of how the environment has been changed in the
plane’s case as compared to the volume’s case. The clearest
demonstration of this phenomenon is the change of cation
potential in / position of Cg04A4. In that case, the closest
opposite charges on Cg, from the same cell are removed.
This enormous increase has a direct connection with the ful-
leride’s doping ability because the positive potential at the
positive ions decreases the cell energy, and to increase the
cell energy the alkali ions try to penetrate inside the crystal,
where this potential is lower. Thus, the assumption® that y
<1 is valid only for diatomic crystals and only for atomic
positions. It follows from this assumption that surface anions
are traps for electrons and cations for holes.

The bottom portion of the Table 12 demonstrates the re-
sults of ‘‘synthesis’’ of a layer from the neutral planes of
different crystals. The TiO, and MgF, crystals have been
used as examples because they have close geometric param-
eters. In the first case, the MgF, plane has been placed be-
tween two TiO, planes. In the second case, the TiO, plane
substitutes a similar plane in the same position in the MgF,
layer. The potential values for infinite mixed crystal, V(Ti)
=—37758, V(Mg)=-28967, V(0)=21.604, V(F)
=16.920, which follow from the table, are in reasonable
agreement with the results of direct calculation for the
middle points of the nine-layer piece of the mixed crystal:
V(Ti)=—37.776, V(Mg)=—28.963, V(0)=21.610, V(F)
=16.918.

The next step of this approach is based on Egs. (1)—(4). It
makes possible the consideration of arbitrary layers and ar-
bitrary surfaces including those defined in Levine® as
‘“‘layer’” and ‘‘intermediate’’ ones. These were considered as
more difficult for calculations. Their common feature is the
nonzero charge of the plane cell. The possibility of removing
the restrictive requirement of the planes’ neutrality does not,
in fact, need a different technique. Indeed, we can apply the
third step of the superposition rule Egs. (4), (5), in the case
of a layer with the charged planes as well. However, the line
of the infinite system of dipoles for this third step is not
directed along the x axis, but along the z axis, while the
dipoles themselves continue to have the direction of vector
a, . Therefore, the definition of the S(p,q,d) function is al-
tered here as a result of the difference in the first arguments
of functions F(p,q) entering S(p,q,d): the first function
depends on x, and the second function depends on x—x;.
These arguments enter both parameter p and g in contrast to
the former situation, when the altered coordinate (z) entered
only g. As a result, the excluded additional logarithmic term
must be included here. Note that the third step of superposi-
tion may be completely omitted for all neutral planes of the
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TaBLE 12. The surface electric field parameters of different crystals

GPF
Monolayer
Crystal Facet Position  Plane Surface Inner Outer N' b4
010 Cl 3.23108 3.363 10 3.498 22 336308 3 0.962 23
(110) Cl 2.662 56 3.078 85 3.621 27 3.07240 3 0.880 90
NaCl (210) Cl 2.77920 3.137 16 3.49569 313716 11 0.897 58
221) Cl 1.034 05 2.264 59 3.158 99 224640 7 0.64793
(211) Cl 0.45797 1.976 05 3.53532 197631 19 0.565 37
(110) Cl 1.773 62 1.904 49 2.050 47 190419 3 0.93570
CsCl (110) o? 0.88945 0.63777 0.473 06 0.68808 3 1.413 45
(110) LI +0.4898 +£0.3389 +0.1787 *0.3391 3 1.802 63
(110) H? 233117 2.16558 1.985 68 216589 3 1.082 78
ZnS (1120) S 447972 4.920 12 5.447 38 491728 3 0.917 84
wurtzite (1010) S 3.51139 4.106 07 5.500 84 411414 4* 0.765 98
ZnS (110) S 6.209 81 6.887 83 7.72221 688077 3 091038
(110) o, T +0.8847 +0.7302 +0.4797 +0.7360 3 1.268 46
(010) (0] 6.462 16 6.459 03 646216 2 1.000 48
(010) Bi —11.032 -11.705 3 —-11.736 2 0.945 63
BaBiO; 010 0? —1.8927 —1.2135 ~1.1880 2 227106
(017200 O 4.569 43 5.51267 5.54128 6 2 0.85390
(01/20) Ba —4.5694 —4.9783 5.00701 2 0.924 11
(010) Ceo 7.800 51 8.341 42 8.942 80 834020 3 0.939 10
CiiAs (010) A —1.3384 —2.1496 —3.0149 —2.1483 3 0.726 01
(010) Ag —3.2311 —3.0959 —2.9639 —3.0959 3 1.045 65
Co'Ay (010) Ceo 10.0266 10.8761 11.8149 10.8743 3 0.927 55
(010) Ap —1.0837 —1.5764 —2.1120 —1.5754 3 0.761 89
Coo'As (010) Ceo 9.718 16 10.7787 11.9387 10.7766 3 0.91042
(010) A; 1.677 36 084413 —0.0574 084563 3 77.36 53
CaF, (110) Ca —6.2098 —6.8878 —-7.7222 —6.8808 3 0.91040
(110) F 3.54725 3.809 00 4.10095 3.80838 3 0.93570
Potential (in V)
TiO, (010) Ti —33.796 —39.268 —47.069 —39.137 3 0.8777
010 (e} 18.7677 22.3262 26.7636 222738 3 0.8625
MgF, (010} Mg —16.645 —19.378 —23.173 —19.320 3 0.8764
(010) F 9.1160 10.9273 13.1581 10.9030 3 0.8578
(TiO,),+  (010) Ti —33.539 —35.648 —29.937 —35.597 3 0.9437
MgF, (010) (0] 18.4990 20.0516 17.2920 200299 3 0.9279
(MgF,),+  (010) Mg —16.770 —22.868 —40.123 —22.736 3 0.7896
TiO, (010) F 9.2495 13.0847 22.5203 13.0308 3 0.7733

!"The number of planes in the monolayer.

*Three monolayers are necessary to obtain the correct surface GPF, and four monolayers are necessary to obtain
the correct volume GPF.

3Qctagonal vacancy; point F in Fig. 2. Other vacancies (I,I' etc.) also correspond to Fig. 2.

“Here, the distance between monolayers differs from the distance between the planes inside the layer. This is
partly the reason why in this and similar cases a different version of the computer program has been used. The
computer calculates the position of the coordinate origin of each plane inside the layer in one version of the
program. In the other version these positions are included in the input data. In the latter case, a layer can be
constructed of planes taken from different crystals, and ‘‘mixed crystals’” can be built. Calculation of any entry
on the table together with EFG parameters takes less than a second on a PC.

3In this case, these are also the outer positions.

®In this case, these are also the inner positions.
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layer, and the described changed version of the procedure
has to be applied only to charged planes.

Summation of logarithmic terms gives rise to a new prob-
lem. At first glance, it seems that the above technique can
only worsen the series convergence because of the replace-
ment of the summation of the inverse distances by the sum-
mation of their logarithms. However, the explicit formulas
for the sum of the logarithms can be- obtained. To be more
specific, let us consider a simple case when all charges are
concentrated in two planes: (a;,a3), and a parallel plane
which intersects lattice vector a, at point Ya,. Then after
two stages of the shifting procedure, described in Sec. 2, the
charge distribution is reduced to a set of, say, O charges,
situated in all vertices of plane cells in the (a;,a3) plane and
a similar set of —(Q charges, situated in all vertices of the
second aforementioned plane. The potential of this system
can be found by means of the described method.

Application of Egs. (1)-(2) allows for the presentation of
this potential in the form

V(r)=0(U(p.q)=U(p'.q")) a3, U

0

=4n:2

—co

E Ko(27lp,)cos(2wlq,)
=1

- 2 Inp?, (13)

n=—x
where the previous expression of p,, may be modified:

Pa=(uqgugy =)y uy+uyy(x—upyluy —n)%

(14)

The presentation of g, remains the same as in Eq. (2). In

the primed quantities, y should be replaced by y—Y. The

single sum in Eq. (13} can be evaluated together with the

similar contribution from U(p’,q') by means of the modi-

fied Euler product presentation for sine [Gradstein, Ryzhik,*!
Egs. (1.431) and (1.436)], namely as

=)

> In(((n—a)*+b2)/((n——c)?+d?))

n=-

=In((sin? 7ra + sinh? 7b)/(sin® 7c + sinh? 7d)).

(15)
As a result, the calculation of U becomes very simple:
U=4 2, D Ko2mlp,)cos(2mlq,)
n=—o [=]
—In kuyy(sin® w(x—uypy/uyy) +sinh? 7oy),
(16)

where v = (\uUn— uzlz)/ uy;. The inclusion of the constant
«=(e%/27)? permits the use of this equation even when the

corresponding logarithmic term from U’ has all zero argu-
ments (and must be omitted).

It is not difficult to show that *‘atomic structure’’ becomes
indistinguishable at large distances from planes, and Eq. (16)

turns into the standard expression for the potential of charged
plane: U= —2ol|y| (y is the distance from the plane and o
is the surface charge density).

Our system is transformed into two infinite sets of equi-
distant parallel lines of opposite linear charge densities * y
in another limit case when a;—0 but Q/a;— vy remains fi-
nite. Then the contribution from the sums disappears. Taking
into account the connection between the screw angle and the
accompanying Cartesian coordinate system, shown in Fig. 1
(we have interchanged the roles of x and y axes for this
purpose), we can see that potential (16) reduces to

U=y In(sin*(7&/R)+ sinh®(mw7/R))/
(sin®(mw€&'/R)+sinh®(75'/R)). (17)

Here, ¢ and 7 are Cartesian coordinates of the observation
point, and R is the distance between the lines. The primed
quantities are: ¢'=£&—s5, 7' =n—d, where s is the shift of
the negative charge lines relative to the positive ones along
the planes, and d is the distance between the planes.

It is necessary to make a comment before presenting the
results of the calculations. As is clear from the considered
first limit case, there exists a voltage between opposite sides
of any layer containing charged planes. Therefore, at large
distances it behaves like a double electric layer. Since we are
interested in the ‘‘atomic’” part of the electric field, it is
natural to exclude the influence of the aforementioned uni-
form field. A model of this procedure is the assumption that
the set of layers of the above type is placed between the
plates of a charged capacitor. The position of the plates and
the value of the capacitor charge are determined from the
condition of the field disappearance outside the capacitor.

In particular, let us consider our basic system QL,. Here,
the capacitor charge should be Q/2, and the distances of its
plates from the frontier charged surfaces for the set of plane
layers are (1/4)a,. (We remind you that the distance be-
tween charged planes in L, will be 1/2 in units of a,). This
guarantees the absence of the field created by the charged
planes of the layers outside the capacitor. Note that for an
infinite set of layers, i.e., for the solid body, these plates are
removed to infinity. In other words, they are, in fact, absent,
but this model allows us to obtain the potential of the bulk
ionic crystal as the limiting case of the infinite set of layers
containing charged planes.

Thus, we shall distinguish three types of potential in layers
of the above type: natural potential calculated by means of
Egs. (13) and (16), screened potential, obtained by addition
of the capacitor field to the former one, and local potential,
ie., the difference of natural potential and the potential of
solid planes with the uniform surface charge density and the
same positions as the planes of the initial layer formed of
point charges. The screened potential may be presented as
the sum of the local potential and the ‘‘zigzag’’ potential
which changes linearly between the values *2w7Qd(a,
—d)/a, on the charged planes. Table 13 illustrates all these
peculiarities. A similar but more complicated picture is ob-
served in other cases since an arbitrary set of layers can be
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TaBLE 13. Geometric potential factors for L-system layers consisting of charged planes
Local Natural Screened
Nl
Face Point? A 0] A Q A (0]
(100) 7 —2.749 63 1.652 85 —2.749 63 1.652 85 —2.749 63 1.652 85
(110) 7 —2.75651 1.30593 —2.756 51 1.30593 —2.756 51 1.30593
(001) 13 —-4.11377 0.166 57 -097218 3.308 16 —2.54297 1.73737
(0o1) 28 —4.106 23 0.170 14 2.176 96 6.45333 —2.53543 1.740 94
(001) 33 —4.106 21 0.170 15 531856 9.594 93 —2.53542 1.740 94
(001) 724 —4.106 21 0.170 15 17.884 94 22.161 30 —2.53542 1.740 94
(001) 7 —4.31216 0.089 04 —1.17057 3.23063 —2.741 37 1.659 84

"Number of layers. The layer planes are parallel to the plane ABCD in Fig. 2.

The point notation corresponds to Fig. 2.
3GPF for the points in the first layer.

“MCs for the cells of the first layer are 4.212 97, 1.071 37, 2.642 17 for local, natural, and screened cases,

respectively.

SGPF for the points in the fourth layer. The bulk MC has the same but positive value as GPF for A point.

composed of layers corresponding to several QL, systems.
From Table 13, it is clear that the local potential reaches its
limit value in the first layer after the addition of one or two
layers to the initial one just as in the case of neutral planes.
Therefore, the parameters of an infinite volume ionic crystal
can be evaluated from the data for the middle part of a sys-
tem with 7-9 layers.

It can also be observed that natural and screened potentials
include the field of the charged planes and are changed dras-
tically after the addition of each new layer. The most impor-
tant conclusion follows from the last row of the table: the
values of the screened potential in the central part of the
seven layers coincide with the results of direct calculation for
the bulk L system by means of Eqs. (9). This argument pro-
vides the most convincing support for this approach to the
charged plane case. It is evident that for comparison of the
volume and surface properties, one should analyze the dif-
ference between the data in the last and preceding row of the
table.

In particular, the difference of the MCs is independent of
the type of the potential used and may be defined as the
surface energy: 0.0992, which is of the order of 3.6% of the
total cell energy. More generally, the ionic crystal surface
energy can be defined as the difference of the total cell elec-
trostatic energy inside the crystal body and on the crystal
surface. The possibility of calculating the surface energy
demonstrates the usefulness of the concept of the crystal
layer. It is more suitable in this respect than the concept of
crystal plane.

The neutral layer cell always exists in contrast to the plane
cell. Therefore, in order to find the surface property, it is
only necessary to calculate in a standard manner the suitable
quantity for the cell of the surface layer. Naturally, all data
from Table 12 for neutral planes are reproduced in this way.
We have included in Table 13 the results for the neutral faces
(100) and (110) for the sake of comparison. Obviously GPFs
in the neutral case are independent of the potential type.
The most interesting feature, which these examples demon-
strate, is the possibility of both signs for the surface energy:
2.74136~2.74963=-0.0083 and 2.74136—2.75651
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=—0.0152, while for (001) it was 0.0992. The sign depends
merely on the type of interaction of the surface cell with the
adjacent cell of the attached layer. The repulsion prevails in
the first two cases. Since the effective thickness of the layer
is smaller for the (110) face, the absolute value of the surface
energy here is greater. At the same time, adjacent cells of
(001) attract each other.

Similar peculiarities are observed in real crystals. There-
fore, for the sake of brevity, we present analogous results
only for the first and central layers of some typical ionic
crystals in Table 14 (the data for several traditional cubic
lattices are shown in the upper part of the table). The local
potential behaves like the potential of a neutral plane; in
particular, the influence of adjacent layers fades at the dis-
tance of 2-3 lattice constants. From this, it follows that at
similar distances outside the crystal body, the natural poten-
tial reaches a stationary value. This parameter is given in the
ninth column of Table 14. For the same reason, this voltage
for the set of several layers is proportional to the number of
layers. In particular, this quantity may be zero, as in the case
of TiO,, since this crystal is composed of finite quadrupoles.
The data for neutral cases: NaCl (110) and CaF, (110) are
included for the sake of comparison with Table 12.

The potential in the middle of the screened layer set re-
produces the correct bulk value, as is evident from the com-
parison of the bold figures from the eighth column with the
corresponding quantities in Tables 1, 4, and 6. It should be
mentioned that EFG is identical for either type of potential,
since these differ only in linear terms.

It is also worth emphasizing that in such cases as
YBa,Cu;0,, there is no way to calculate the surface param-
eters other than to consider the charged planes since, in this
crystal, neutral planes, which divide the crystal onto sym-
metrical parts, do not exist. It should be mentioned that thin
films made from this material were carefully studied experi-
mentally (see e.g. Martovitsky>?), and surface puckering was
discovered. This is in accordance with the positive surface
energy of this crystal shown in the last column. The data
from the last rows of the table show that the difference in the
surface and bulk potentials of this crystal is weaker than in
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TABLE 14. Potentials of charged planes in layers of some ionic crystals
Local Natural Screened

Crystal . External Surface
and facet Position 1! 5t 1 5! 1! 5! natural® energy
CsCl Cl 3.614 36 3.606 16 25.605 51 0.464 57 2.043 56 2.035 36 3.141 59 —0.077 63
(010) Cs —3.753 21 —3.606 16 24.521 12 —0.464 57 —2.18242 —2.035 36
NaCl cl 577410 558953 —31.9250 1.40073 3.67971 349513  4.18879 —0.086 09
(111) Na —5.57713 —5.58953 —34.8987 ~1.40073 —348273 —3.49513
NaCl Cl 3.078 85 3.495 13 3.078 85 3.49513 3.078 85 349513 0.0 0.35322
(110) a1’ 3.558 20 3.49513 3.558 20 3.49513 3.558 20 3.49513
Cu,0 o 7.957 87 8.047 33 —20.3165 5.905 733 6.38707 6.476 53 3.141 59 0.208 84
(110) Cu —1.93833 -221213 -30.2127 —5.35372 —3.509 13 —3.782 93
BaBiO; Bi —15.1856 —15.5191 41.3631 —9.23587 —12.0440 —12.3775 3.141 59 0.683 84
(110) 0 2.655 19 3.314 31 59.2039 9.597 49 5.796 78 6.455 90

Ba —9.027 88 —8.52879 47.5208 2.245 61 5.886 29 ~5.387 20
CaF, Ca —6.887 83 —17.565 84 —6.88783 —~17.565 84 —6.887 83 —17.565 84 0.0 1.692 89
(110) Ca’ —7.644 03 —7.565 84 —17.644 03 —7.565 84 —7.644 03 —17.565 84

F 3.808 99 4.07073 3.808 99 407073 3.808 99 4.07073

F 4.085 84 4.07073 4.085 84 407073 4.085 84 407073
CaF, Ca —10.8695 -10.7075 102.228 1.858 92 —7.72795 —17.565 86 12.566 37 —0.361 47
(010) Ca® —10.7097 ~10.7074 89.8213 —10.7074 —7.568 06 —17.565 84

F 7.22873 721232 107.760 721232 408713 4.07073

P 721235 721232 95.1769 —5.35405 4.07076 4.07073
Tio,* Ti —61.5578 —59.2721 —37.7823 —35.4967 —47.0262 —44.7406 0.0 9.298 43
(110) o) 26.6378 35.1285 26.6378 35.1285 17.3939 25.8846

Ti' —56.3477 —59.2721 —32.5723 —~35.4967 —41.8162 —44.7406

o’ 11.9409 11.3531 35.7163 35.1285 26.4724 25.8846

o’ 34.4226 35.1285 34.4226 35.1285 25.1787 25.8846
““Half 7'%° Ti —55.3142 —52.8794 —31.5388 ~29.1040 —40.7827 —38.3479
TiO, o} 31.1042 34.1981 31.1042 34.1981 21.8603 24.9542 0.0 1.04312
(110) i ~54.0968 ~52.8794 -30.3214 —29.1040 —139.5653 —38.3479

o’ 33.8141 34.1981 33.8141 34.1981 24.5702 24.9542

Ti(v) —18.9837 —20.9242 4791 69 2.8513 —4.4522 —6.3926

O(v) —13.4518 —13.6011 10.3236 10.1743 1.07973 0.9305
YBa,Cus Y —43.8371 —43.8369 240.758 —43.7516 —33.3367 —33.3366
0, . o1 16.2681 16.4696 336.342 52.0334 26.6831 26.8846
(001) Cul ~37.5373  —40.0810 282536 ~45173 —27.1223  —29.6660

Ba —21.9962 —21.9275 279.229 —52125 -17.3212 —17.2525

Cu2 —21.4146 —21.4173 255.442 —29.0706 —28.9237 ~28.9264

02 34.1401 34.1400 301.736 17.2258 18.9137 18.9135

03 34.1613 34.1614 301.529 17.0197 18.8210 18.8212 35.563 74 3.834 39

04 24.2972 24.1808 321.838 37.2114 23.4456 23.3292

Ba —21.9275 ~21.9275 234.388 —52125 —~17.2525 —17.2525

Cu2 -21.4172 —21.4173 234.898 —29.0706 —28.9264 —28.9264

02 34.1400 34.1400 284.281 17.2258 18.9135 18.9135

03 34.1614 34.1614 284.303 17.0197 18.8211 18.8212

04 24.1808 24.1808 273.127 37.2114 23.3292 23.3292

!The number of the observation layer. The total number of layers is nine.
“The potential outside the crystal body. The shown value is reached at the distance of two lattice constants from the crystal surface and does not change any
more. The potential on the other side of the crystal has the same but negative value.
3The first ion is situated on the crystal surface while the second similar ion is inside the first (surface) layer. GPF for Na differs only in sign from that for the

corresponding Cl.

“The potential for these crystals is given in V.
5This crystal has the same rectangular cell of the layer as TiOy(a;J2,a,42/2,a;) but one of the two molecules is removed from the cell. Ti(v) and O(v)

correspond to the values for the vacancies that appeared.
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the other cases considered. Only potentials of the frontier
plane (Cu 1, O 1) and the next one (Ba, O 4) have noticeable
changes: in the surface case, the charge transfer from metal
to oxygen is facilitated while the properties of (Cu2, 02, O3)
plane remain unchanged. This conclusion follows from the
consideration of either type of potential.

The model calculation of the ‘‘half TiO,”’ crystal, in
which one TiO, molecule is removed, demonstrates the abil-
ity of this technique (and the program) to construct (to cal-
culate) crystal properties from the various ‘‘building materi-
als.” It is clear that if we were to return the removed
molecule, we would obtain the initial TiO, crystal. Indeed,
the sum of ionic and the corresponding vacancy screened
potential gives the potentials of Ti and O, respectively, in
TiO,. Simultaneously, this model provides another check on
the proposed technique. If we were to rotate the coordinate
system 90°, the same crystal would be built on neutral
planes, each containing TiO, molecules. The corresponding
calculation leads to the same bulk potential values 24.9542
for O and —38.3479 for Ti as those shown in column 8 for
the “‘half TiO,.”’

The final comment on this treatment of surface properties
is that the use of the above technique, is perhaps even more
important for quantum mechanical calculations of molecular
crystal layers than the ionic ones. The previous ‘plane”
method has allowed dealing only with flat molecular layers*’
formed of plane molecules not deviating from their common

plane. For instance, the increment of the frequency depen--

dent hyperpolarizability of triaminotrinitrobenzene has been
calculated in this way when these molecules enter a molecu-
lar crystal.>® Now the possibility has arisen to consider layers
of arbitrary molecules with any orientation. However, this is
another topic.

9. Conclusions

Present calculations allow for the extension of the conclu-
sion drawn in Jonson and Templeton*® after the first applica-
tion of the electronic computer (IBM 704) to the calculation
of MCs: ‘‘the mathematics is not the determining factor in
accuracy with which the Madelung constant is known.”’
Now there are no mathematical obstacles to prevent the de-
termination of all electrostatic field parameters of ionic crys-
tals with any necessary accuracy, including EFG and various
surface characteristics. The direct use of these parameters is
the determination of the cohesive energy of ionic crystals,
the alteration of the binding energy of an electron on an ion
in crystal as compared to a free one, the calculations of NQR
frequencies, etc. Measurements of cohesive energy, x-ray
spectra, positions of electronic levels of complex ions in
crystal, the band structure, NQR spectra, and so on, use these
theoretical predictions as a starting point. Moreover, in the
form of MIP the proposed procedures can be applied to
quantum calculations of molecular crystals, molecular films,
and oriented molecular layers from the first principles. This
would require only a transformation of the Coulomb poten-
tial into MIP in the current quantum mechanical programs
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for isolated molecules. The definition of the ionic crystal
surface energy is introduced, and it is demonstrated that this
quantity may be positive as well as negative. The technique
developed generalizes methods of calculation of MC, site
potentials, and EFG for an infinite ionic crystal to a real
crystal body, restricted by two parallel planes, which are ori-
ented arbitrarily to the crystal axes. All mentioned param-
eters may be obtained in any crystal layer at the arbitrary
depth from the surface including the surface layer. The re-
sults of such calculations are demonstrated.
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